
HogWild++: A New Mechanism for Decentralized
Asynchronous Stochastic Gradient Descent

Huan Zhang∗, Cho-Jui Hsieh† and Venkatesh Akella∗
∗Dept. of Electrical and Computer Engineering,
†Depts. of Computer Science and Statistics,

University of California, Davis
Davis, CA 95616, USA

Email: {ecezhang,chohsieh,akella}@ucdavis.edu

Abstract—Stochastic Gradient Descent (SGD) is a popular
technique for solving large-scale machine learning problems. In
order to parallelize SGD on multi-core machines, asynchronous
SGD (HOGWILD!) has been proposed, where each core updates
a global model vector stored in a shared memory simultaneously,
without using explicit locks. We show that the scalability of
HOGWILD! on modern multi-socket CPUs is severely limited,
especially on NUMA (Non-Uniform Memory Access) system, due
to the excessive cache invalidation requests and false sharing. In
this paper we propose a novel decentralized asynchronous SGD
algorithm called HOGWILD++ that overcomes these drawbacks
and shows almost linear speedup on multi-socket NUMA systems.
The main idea in HOGWILD++ is to replace the global model
vector with a set of local model vectors that are shared by
a cluster (a set of cores), keep them synchronized through
a decentralized token-based protocol that minimizes remote
memory access conflicts and ensures convergence. We present the
design and experimental evaluation of HOGWILD++ on a variety
of datasets and show that it outperforms state-of-the-art parallel
SGD implementations in terms of efficiency and scalability.

Keywords—Stochastic gradient descent, Non-uniform memory
access (NUMA) architecture, Decentralized algorithm

I. INTRODUCTION

Stochastic Gradient Descent (SGD) has become one of
the most important technique for solving large-scale machine
learning problems. At each iteration, SGD randomly chooses
a training sample and updates the model vector w according
to the current estimate of gradient. Due to its low memory
requirements and simple update rule, it has been applied
to a wide range of applications, including support vector
machines [19], neural networks [2], [8], and recommender
systems [7]. Unfortunately, due to the nature of “sequential
updates”, it is not easy to parallelize SGD algorithms. During
the past few years there have been some breakthroughs in par-
allelizing SGD algorithms including lock-free asynchronous
update strategies [17] on multi-core machines, and the use
of parameter servers to coordinate model updates [4] on
distributed systems.

In this paper, we focus on parallelizing SGD on a multi-core
machine, where cores are allowed to access a shared memory
space. For this setting, HOGWILD! proposed in [17] is the
most widely-used approach. In this algorithm, multiple threads
conduct SGD updates asynchronously, and communication be-
tween threads is done implicitly by accessing the same model
vector w stored in the shared memory space. This simple

but effective idea has become extremely popular and used
in many other applications, such as asynchronous coordinate
descent [13], [6], Pagerank [14] and matrix completion [3].

Though HOGWILD!-style algorithms are lock-free and seem
to have unlimited thread-level parallelism, they depict poor
scalability as the number of cores increases. The main reason
for this poor scalability can be traced to the fact that all
the threads continuously read from and write to the same
memory block that houses the global model vector, which
results in excessive invalidation of cache lines on writes
and an increase in coherence misses. This phenomenon is
particularly deleterious on modern multi-socket systems with
Non-Uniform Memory Access (NUMA) architecture, since
forwarding data from a remote socket is very expensive.
In Figure 1 we present the speedup of HOGWILD! on a
NUMA machine with 4 CPU sockets with each socket being a
processor with 10 cores. We used three classification datasets
as sample problems, and applied HOGWILD! to train a linear
SVM. Note that the speedup drops to less than 3 when more
than one socket is used. Furthermore, when all the 40 cores
are used, the overall speedup is less than 1 on these datasets,
which means when using 40 cores HOGWILD! is worse than
a single-thread serial SGD implementation. This motivates the
research presented in this paper. Specifically, we are interested
in improving the scalability of HOGWILD!-style parallel SGD
algorithm on modern shared-memory processors with multi-
level memory hierarchies.

In this paper, we propose a novel decentralized asyn-
chronous parallel SGD algorithm called HOGWILD++ that is
designed to work better with cache-coherent NUMA archi-
tectures. The main idea in HOGWILD++ is to replace the
global model vector with a set of local model vectors that are
shared by a cluster—a set of cores aligned within the same
NUMA node. During the course of the algorithm, local model
vectors are updated independently; after a certain number
of updates, each cluster communicates the state of its local
model vectors to its neighbors using a novel distributed token-
based mechanism (described in Section IV) for the overall
correctness of the algorithm and to ensure fast convergence.
Since the updates are done to the local model vectors, cache
invalidation on writes and coherence misses due to false shar-
ing are dramatically reduced, which improves the scalability
of the algorithm.
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Fig. 1. Speedup for HOGWILD! on a 40-core machine with 4 sockets. We
can observe that the speedup is far from ideal—it can be even slower than a
single-threaded version when using 40 cores, and there is a clear performance
drop when HOGWILD! uses more than 1 socket with 10 cores. This motivates
us to develop a new asynchronous SGD algorithm in order to utilize the full
power of multi-socket machines.

The main contributions of the paper are:
• We proposed HOGWILD++ , a non-blocking, lock-free, and

fully asynchronous SGD implementation that scales very
well on multi-socket machines with a large number of cores.
By design, each cluster of cores maintains a local copy of
the model to avoid coherence misses.

• HOGWILD++ is decentralized in nature, and does not main-
tain a central w or need a central coordinator to ensure
convergence. Model synchronization is done asynchronously
by passing model updates to a neighboring cluster using a
token-based protocol.

• Our experiments show that HOGWILD++ is scalable and effi-
cient. It is significantly faster than state-of-art asynchronous
parallel SGD implementations, especially when running on
machines with several NUMA nodes.

II. RELATED WORK

A. Parallel Stochastic Gradient Descent

Many parallel SGD algorithms has been presented in recent
literature. Here we briefly review parallel SGD for multi-core
and distributed systems.

Mini-batch SGD. Instead of computing the gradient of
one training sample at a time, mini-batch SGD aggregates the
gradient of b samples for conducting one update. Theoretical
analysis and extensions to the basic mini-batch algorithm can
be found in [5], [10]. Mini-batch SGD can be applied to both
multi-core and distributed systems. However, its synchroniza-
tion cost is too large for large-scale applications, and choosing
the batch size b leads to a trade-off problem in communication
time and convergence speed.

HOGWILD! for multi-core machines. HOGWILD! de-
scribed in [17] introduced an asynchronous lock-free update
scheme to parallelize SGD on shared memory multicore
processors. But as we described in Section I, scalability of
HOGWILD! is limited because of coherence misses since all
the threads access the single copy of the model vector in

the shared memory space. Recently, [12], [18] presented a
solid theoretical analysis for HOGWILD!-styled algorithms,
and [18] further proposed a BuckWild algorithm to exploit
lower-precision SIMD arithmetic in modern CPU.

Zhang and Ré [24] discussed the scalability issue of
HOGWILD!, and developed a framework, DimmWitted, with
three model replication approaches to explore gradient based
methods on multi-core systems. The PerMachine approach
is identical to HOGWILD!. The PerCore approach keeps a
local replica of the model for each worker thread, and averages
the model at the end of each epoch; The PerNode approach
keeps a replica of the model for each NUMA node (CPU
socket), and a dedicated thread on each node reads models
from all other nodes and computes the average. On a node with
N cores, PerNode approach launches N worker threads, plus
an additional thread for model averaging. We will compare our
approach with HOGWILD! and DimmWitted in Section VI.

Asynchronous SGD for distributed systems. There are
other asynchronous SGD algorithms proposed in distributed
systems. For example, the concept of parameter servers is
proposed in [4], [21], [9], where the updates are controlled by a
parameter server formed by a subset of machines. [26] recently
proposed an elastic averaging SGD to get better performance
on non-convex problems.

B. Other Asynchronous Algorithms

Due to the success of HOGWILD!, there are many asyn-
chronous methods proposed for parallelizing other algorithms
or solving some specific machine learning problems. For
example, [13], [6] developed asynchronous coordinate de-
scent algorithms, [25] proposed a simple way to improve
the convergence property of asynchronous coordinate descent.
[11] proposed a comprehensive convergence analysis for asyn-
chronous algorithms. However, all the above algorithms follow
the HOGWILD! framework, where the parameters are stored
in a centralized shared memory, and the memory access will
become a bottleneck when scaling to multiple sockets. Our
proposed HOGWILD++ algorithm solves this critical scalability
issue for SGD, and can also be potentially applied to other
asynchronous algorithms mentioned above.

Another line of research focuses on developing asyn-
chronous algorithms for specific machine learning problems.
For example, [23] developed an asynchronous SGD algorithm
(called NOMAD) for matrix completion on multi-core or
distributed systems. This algorithm can also be used to learn
topic models [22]. However, they focus on a specific type of
problem and cannot be generalized to other problems.

III. BACKGROUND

In this section we will discuss the HOGWILD! approach
for asynchronous SGD updates and its limitations in terms of
scalability on multi-socket multicore architectures.

A. Asynchronous Stochastic Gradient Descent

We consider the following minimization problem

min
w∈Rn

{ 1

m

m∑
i=1

fi(w)
}

:= f(w), (1)



where the objective function f(·) : Rn → R can be decom-
posed into m components. Most machine learning problems
follow this framework, where fi(w) is the loss defined on
one training sample. For example, the SVM problem can be
written as

min
w

m∑
i=1

(
C max(1− yiwTxi, 0) +

1

2

∑
j∈Ωi

w2
j

dj

)
, (2)

where {(xi, yi)}mi=1 are training samples and labels, C is the
regularization parameter, Ωi is the set of the nonzero indices
in the i-th sample xi, and dj = |{i : j ∈ Ωi}|.

Stochastic Gradient Descent (SGD) is one of the most
widely used approaches for solving (1), especially when
there are a large number of samples. At each iteration, SGD
randomly samples an index i from {1, · · · ,m}, and conducts
the following update:

w ← w − ηk∇fi(w), (3)

where ηk is the step size. Many recent efforts on paralleliz-
ing SGD focus on the HOGWILD!-style updates on multi-
core computers, where multiple threads keep conducting up-
dates (3) simultaneously and asynchronously to the same
model vector w in the shared memory:

Each thread repeatedly performs the following updates:
w ← w − ηk∇fi(w).

Note that there is no locking in HOGWILD!, but the correctness
can be proved under certain condition. Unfortunately, as shown
in Figure 1, HOGWILD! is not scalable when using many cores
in a single machine. To understand this phenomenon, we need
to look into the system architecture of multi-core processors.

B. Cache Coherence Protocol in modern CPUs

Modern Intel CPUs use the MESIF cache coherence pro-
tocol in a multi-core system [20]. The purpose of cache
coherence system is to keep the communications between
cores implicit and transparent to programmers. If one core
writes a variable w in its cache, all other cores should be able
to see the updated w. The smallest resource block managed
by cache controllers, called a cache-line, is usually 64-bytes.

Under the MESIF protocol, any cache-line that is shared by
more than one core, will be marked as “shared”. Reading of
a variable inside this cache-line, is a cache-hit and very fast.
However, when one of the cores, C1, modifies this variable, it
will broadcast a request on the bus to invalidate all other cores’
shared copies in their caches because they are now outdated.
When another core, C2, wants to access this variable again,
it has to be forwarded from C1 using the internal ring bus.
Profiling results from [16], [15] show that this is usually a
few times slower than a cache hit.

In a multi-socket system, CPU sockets (each one usually
contains more than one cores) are connected by the inter-
socket QPI bus. QPI not only has less bandwidth than the
internal ring bus, but also has much higher latency. Forward-
ing data from another socket’s cache can be two orders of

magnitude slower than a cache hit, depending on the topology
distance of the two sockets[16], [15].

False Sharing is another performance issue when two or
more cores share data. Assume two cores are modifying two
different variables, wi1 and wi2 , but wi1 and wi2 happen to
be adjacent in memory and thus reside in the same cache line.
When the first core, C1, writes to wi1 , the cache controller of
the second core, C2, will invalidate its cached copy of wi2 ,
even if C1 and C2 actually don’t share the two variables. When
C2 needs to read wi2 , a cache-miss occurs, and the entire cache
line containing both wi1 and wi2 has to be forwarded from C1.

C. Scalability of HOGWILD!

Instruction level profiling of HOGWILD! over two differ-
ent classification datasets (covtype and unigram webspam)
shows that it is a memory-bound application, i.e., over 90% of
execution time is spent on reading training data and updating
the model, instead of computing the gradient. Since training
data are only read, they do not constitute a bottleneck as
the number of cores increases. The scalability of HOGWILD!
depends heavily on the model memory access pattern, which
in turn depends on the input dataset. The size of the model
(or the feature size, in the SVM context) and the sparsity of
the data are the major factors to consider here. When the size
of the model vector is small (as in covtype and webspam),
cache invalidation due to frequently updated shared variables
significantly slows down memory operations, and false sharing
exacerbates this situation further. For example, consider a
model with 256 double-typed elements. It will reside in only
32 cache lines. If there are a large number of worker threads
(say 40) updating elements in the model vector, multiple cache
invalidations can occur in every gradient update.

A small model definitely hurts scalability, but a large model
does not necessarily guarantee good scalability. Suppose the
data is high dimensional and very sparse, however the non-
zeros are concentrated in very few coordinates. In this case,
only the corresponding very few coordinates of the model
vector are updated frequently. The overall effect, is similar
to updating a small model. HOGWILD! would scale better
when the model size is large, data is sparse and the non-zero
elements in the data are distributed uniformly. However, that
is not always the case and hence we desire algorithms that will
scale well on all data sets with a wide variety of characteristics.

IV. PROPOSED ALGORITHM

In this section, we introduce the proposed decentralized
asynchronous SGD algorithm—HOGWILD++ .

A. Design Considerations

a) Reducing Sharing: Knowing that excess cache inval-
idation caused by frequently reading and writing the shared
model vector w is the bottleneck in lock-free parallel stochas-
tic gradient algorithms like HOGWILD!, we want to reduce
sharing between threads, so that when one thread writes to a
model vector, it does not slow down the reads of other threads.

Zhang and Ré [24] proposed an algorithm called DimmWit-
ted, and investigated “PerCore” and “PerNode” strategies



where each core has a separated w, or each node (physical
socket) shares a w. To gain better flexibility, we propose the
“per-cluster” strategy, which groups c cores into a cluster,
sharing a single model wj . This model vector will be updated
by the c cores in that cluster in a lock-free manner. HOGWILD!
can be seen as a special case when there exists only one cluster
and thus c = N , where N is the total number of physical cores.

When selecting the cluster size for a problem, it is a trade-
off between hardware efficiency and statistical efficiency. Less
sharing slows down convergence and thus more iterations are
needed, but the hardware can run each iteration faster.

b) Model Synchronization Strategy: To reduce sharing
between threads we have to create multiple model vectors,
but how to synchronize these models so that the entire system
will converge to an optimal solution quickly?

One solution (used in DimmWitted) would be using a sepa-
rated synchronization thread which periodically reads models
on all other workers, and then writes the average back to its
own model replica. We argue that this does not scale well
in a large-scale NUMA system. When the synchronization
thread updates the model replica, it has to access models
of all other threads (or clusters). If we have more than 1
node, the synchronization thread has to access remote memory
frequently. For example, consider a system with 128 nodes,
then the synchronization thread has to access other 127 nodes’
remote memory, which can be very expensive.

To address this problem, we propose that each cluster will
only communicate with its topological neighbors (e.g., cores
on the same physical socket, or its neighboring sockets). There
is no special thread for synchronization; instead, each thread
synchronizes with its neighbors by writing its own updates
∆w into its neighbors’ memory. Communication with neigh-
boring cores is low-cost, and we can potentially fully utilize
the interconnect bandwidth if we allow non-conflicting (in
terms of interconnect topology) clusters doing synchronization
at the same time.

c) The Model Synchronization Ring: In this paper, since
we are targeting at multi-socket systems, we only consider
a simple case of the above-mentioned idea: all clusters are
connected by a logical ring, and they take turns to update
model vectors to their neighbors. We maintain a token, that is
passing along the ring, and only the thread with the token can
synchronize with its next neighbor on the ring.

In our algorithm, each cluster stores two local model vectors
wj and w̄j , where wj is the snapshot of the model vector
after last synchronization and w̄j is constantly being updated.
We denote wk

j as the local model vector in cluster j when it
just finishes its k-th round of synchronization. When cluster j
conducts an SGD update, it updates the model parameters in
w̄τ
j , where τ is the iteration number of SGD update, and keeps

wk
j intact. The difference between wk

j and w̄τ
j is defined as:

∆wk
j = w̄τ

j −wk
j (4)

Cluster j will always use w̄τ
j in gradient computation.

d) Communication Protocol: When cluster j gets the
token, it will synchronize its model by passing ∆wk

j to the
next cluster on the ring, and updating its own snapshot wk

j . It is

actually nontrivial to design this protocol. If cluster j directly
writes ∆wk

j to the next cluster without decaying, then ∆wk
j

will be passed along the entire ring, and eventually returns to
cluster j. This will certainly cause divergence because ∆wk

j is
amplified during the synchronization process, and each local
model w will eventually go to infinity.

To solve this problem, we decay ∆w by a factor β each
time when we compute wk+1

j , so the operations will be:

Add β∆wk
j to w̄τ ′

j+1 in a lock-free manner (5)

Add β∆wk
j to wk

j (6)

Note that only cluster j can update wk
j , so there will be no

conflicts for (6). Define M as the number of clusters. We use
the root of the following equation as the value of β:

βM + β = 1 (7)

This guarantees ∆wj will not be added multiple times, since
after passing through one round, ∆wj becomes βM∆wj .
When βM∆wj adds up to cluster j’s own update β∆wj , the
entire effect is 1 ·∆wj . Note that β is always larger than 0.5
and usually close to 1. For example, β = 0.934 when M = 40,
and β = 0.724 when M = 4. Therefore, the information will
mostly be written into the current model immediately.

Another benefit of decaying ∆wj , is that we want an older
∆wj to have less weight. When a ∆wj has been passed along
some (say µ) clusters, it reflects relatively old information, so
it is reasonable to give it a smaller weight βµ.

e) Updating Local Model: The update in (6) only uses
∆wk

j . However, by analyzing the accessing pattern, we can
improve this step by using some free information obtained
during the synchronization process.

In a shared-memory system, at the k-th round of synchro-
nization when cluster j writes its ∆wk

j to cluster j+1 without
any intervention of cluster j + 1, it has to read w̄τ ′

j+1 first,
and compute ∆wk

j + w̄τ ′

j+1, then write it back. During this
process, we have to read w̄τ ′

j+1. We want to fully utilize this
information, since we get w̄τ ′

j+1 for free during this process.
Therefore the update rule (6) is replaced by the following
equation where the new wk+1

j is computed using both wk
j

and w̄τ ′

j+1:

wk+1
j = λw̄τ ′

j+1 + (1− λ)wk
j + βγt∆wk

j , (8)

where γ is the step decay and it is necessary for encouraging
convergence and t is the iteration count of a SGD outer
iteration (the epoch), which only increases after all training
samples have been touched once. Another benefit of (8) is to
ensure that our algorithm converges to a single w∞ on all
clusters, which we will show later.

When cluster j writes its ∆wk
j into cluster j + 1, it also

merges w̄τ ′

j+1 into its new wk+1
j . This is reflected as the

coefficients λ in the update rule (8). Because w̄τ ′

j+1 contains
information from ∆wk

j+1, which will be finally passed to
cluster j as βM−1∆wk

j+1, we use the following λ as the
blending coefficient to avoid divergence:

λ = 1− βM−1. (9)



B. The HOGWILD++ Algorithm

Based on the discussions above, we formally propose our
algorithm, HOGWILD++ , for improving scalability on multi-
socket NUMA systems. It groups all N cores in a NUMA
systems into M clusters. Each cluster independently performs
the updates as described in Algorithm 1.

Algorithm 1 HOGWILD++ for each individual cluster j
Input: w0, initial step size η0, step decay γ, number of

clusters M and a token T
Pre-compute β as the root of βM + β = 1
λ = 1− βM−1

k = 0, τ = 0, epoch counter t = 0
w̄0
j = w0

j = w0 shared by all threads in cluster j
Each thread in cluster j repeatedly performs:

randomly pick a i
w̄τ+1
j = w̄τ

j − η0γ
t∇fi(w̄τ

j )
τ = τ + 1
if the this thread gets T, synchronize:

∆wk
j = w̄τ

j −wk
j

wk+1
j = λw̄τ ′

j+1 + (1− λ)wk
j + β(γt∆wk

j )

Update w̄τ ′

j+1 in a lock-free manner:
w̄τ ′

j+1 = w̄τ ′

j+1 + βγt∆wk
j

w̄0
j = wk+1

j

k = k + 1, τ = 0
pass T to cluster j + 1 after τ0 iterations

To start, a token T is given to the first thread of the
first cluster after it has performed several initial updates. For
simplicity, in Algorithm 1, only the first thread of a cluster is
responsible for synchronization. This may cause unbalanced
workload within a cluster, since the first thread has more work
to do. In a real implementation, threads in each cluster can take
turns to synchronize with the next cluster. Also, we observe
that it is worthwhile to delay passing T until τ0 inner iterations
have been done so that cluster j + 1 can do enough updates
before it starts to synchronize, especially when the number of
clusters is small. Also note that the epoch counter t in our
algorithm will increase by one when totally m (number of
training samples) SGD updates are done.

Theorem 1: HOGWILD++ converges to a single w∞ on all
clusters under the conditions where HOGWILD! converges and
γ < 1.

Proof: When t→∞, k →∞, γt → 0 and if HOGWILD!
converges, ∆wk

j is always bounded and thus the update
rule (8) becomes:

wk+1
j = λwk

j+1 + (1− λ)wk
j

Define matrix W k ∈ RM×d where its j-th row is row vector
wk
j and d is the size of model vector. Now we can write the

update rule for round k + 1 in a matrix form:

W k+1 = U ·W k

where U ∈ RM×M is defined as

U =


1− λ λ 0 · · · 0

0 1− λ λ · · · 0
...

. . .
...

0 0 · · · 1− λ λ
λ(1− λ) λ2 · · · 0 1− λ


The structure of the last row is different since wk+1

M is
computed with wk+1

1 rather than wk
1 . Since each row of U

sums to 1 and all entries are real, positive numbers, for any
vector x with xmax as the coordinate with largest modulus,
Ux ≤ xmax · e where e = (1, 1, · · · , 1)T because each
coordinate of Ux is a convex combination of coordinates of
x. Thus, U cannot have any eigenvalue greater than 1. Since 1
is U ’s eigenvalue because U ·e = 1 ·e, 1 is U ’s largest eigen-
value. According to Perron-Frobenius theorem, U ’s largest
eigenvalue is strictly greater than all other eigenvalues. Thus,
for any real vector x ∈ RM , limk→∞ Ukx =

∑M
i=1 xi

M e.
Therefore, limk→∞ UkW = W∞, where each row of W∞

is w∞ =
wk

1+wk
2+···+wk

M

M , which is the average of all wj .
We have not formally shown that w∞ will be an optimal

solution. However, the above theorem allows us to focus
on analyzing one local model wk

j , whose behavior is very
similar to the original HOGWILD! with delayed updates and
its theoretical guarantee has been thoroughly analyzed. In the
future we expect to show our algorithm converges to the global
minimizer. Furthermore, we are able to show experimental
convergence on all the datasets used in Section VI.
C. Possible Extensions

In the above discussions, we designed and analyzed our
algorithm for a shared memory NUMA system. However, our
proposed algorithm does not require any centralized structures
or global communication. When applying our algorithm to a
distributed system that is based on message passing, no central
coordinator (e.g., a parameter server) is necessary. Though
in the current implementation we assumed the underlying
network topology to be a ring, the algorithm can work with
other network topology as well and is eminently suitable for
implementation on modern supercomputers. Our algorithm can
exploit fast local interconnections in modern supercomputers
by passing model information along neighbors, which is an
advantage over model averaging based approach, where each
model vector has to be read despite its topological distance.

V. IMPLEMENTATION ISSUES

Token Implementation. We use the GCC built-in
__atomic_fetch_add() to implement a lock-free
counter, serving as the token. Each thread will check the
counter value and if it matches its thread ID, it will start
the model synchronization. Then, it waits for a configurable
number of iterations τ0 and then increases the atomic counter
so that the next thread can synchronize its model.

Data Permutation. The data permutation subroutine which
is executed before model updates in HOGWILD! is a serial
and naive implementation. In HOGWILD! the SGD updates
cannot achieve good speedup, so a serial data permutation is



not a problem because execution time is dominated by the
SGD update time. However, in HOGWILD++ , SGD updates
become so fast that the serial permutation subroutine turns out
to be a noticeable serial bottleneck. A fast parallel random
permutation algorithm [1] can be implemented so that this
part will not be a bottleneck. Unfortunately, it is not easy
to implement it in HOGWILD!’s existing coding framework,
so we don’t include permutation time in the training timer
in both HOGWILD! and HOGWILD++ . Implementing a high-
performance data permutation algorithm will be important in
real world applications.

Thread Affinity. HOGWILD! has implemented its own
thread pool using POSIX threads. To avoid unnecessary com-
munication between sockets, We use libnuma to identify
CPU topology and enforce that threads are assigned to as
few nodes (sockets) as possible, and threads within a single
cluster are allocated to the same node. Hyper-threaded cores
are not used, unless the user requests more worker threads
than available physical CPUs. We implement thread affinity
in both the original HOGWILD! and our HOGWILD++ .

Data Replication. We replicate data to each node as long
as that node is being used by some threads and we have
enough memory. We use libnuma to guarantee that memory
is allocated to correct nodes.

Turbo Boosting. Due to lack of root privilege on the
machine we used for experiments, we did not disable Intel
Turbo Boost. In fact, our CPUs run about 20% faster in single-
threaded mode than in highly parallel situations. Thus, our
single-thread baselines take less time than they should. But
this will only affect our speedup results adversely since single-
thread baselines are the numerators in speedup calculation.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm empirically and compare it with other asynchronous
parallel SGD algorithms on multicore processors. All the
experiments are performed on a 40-core quad-socket Intel
Xeon E7-4860 machine where each socket has 10 cores. We
ran experiments on the linear SVM task with the objective
function specified in (2). For simplicity, we set the parameter
C = 1 in all the experiments. Since our framework is
developed for general SGD updates, it can be easily applied
to solve other problems by changing the gradient evaluation
step. Our source code is publicly available 1.

Datasets. We test the performance of HOGWILD++ on
5 standard classification datasets downloaded from LIBSVM
website 2. Details of the datasets are shown in Table I. For
epsilon and rcv1 we use the standard training/testing partition
provided on the LIBSVM website. There is no default partition
for other datasets, so we split them randomly, 4/5 for training,
and 1/5 for testing. These datasets cover a wide range of data
characteristics so that we can evaluate the performance of our
algorithm under different settings. rcv1 and news20 (with
less than 0.16% and 0.04% non-zero elements respectively)
represent two very sparse document datasets and epsilon

1http://huanzhang12.github.io/hogwildpp/
2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

represents a dense dataset. Moreover, the number of features
vary from 54 to 1,355,191, and the number of samples vary
from 16,000 to 677,399.

Competing Methods:
1) HOGWILD++ : our proposed method. Recall that we can
control the size of a cluster in our algorithm, where each
cluster contains several cores sharing the same local model
w. We use HOGWILD++-cx to denote the algorithm where
every x cores form a cluster. For example, HOGWILD++-c5
indicates each cluster has 5 cores, and there are 40/5 = 8
clusters. We tested our algorithm with c = 1, 2, 5, 10.
2) HOGWILD!: the asynchronous SGD algorithm proposed
in [17]. We use the latest release v03a.3

3) PASSCoDe4: the asynchronous dual coordinate descent
algorithm proposed in [6]. For a fair comparison with HOG-
WILD!, we use the Wild (lock-free) version, which has the
best speedup but is less stable.
4) DimmWitted5: We implemented SVM based on the
DimmWitted framework with minimal changes to DimmWit-
ted itself. We enforce thread affinities to PerCore and
PerMachine approaches for better performance, and we
shuffle input data after each iteration. We configured
DimmWitted to use Data Sharding, with three different
model replication approaches, PerCore, PerNode and
PerMachine.

Note that in the following discussion we say an algorithm
runs for one “iteration” or “epoch” after it processes all m
training samples once. For all the implementations we generate
a random permutation for all training sample indices and split
the work to worker threads evenly. We say an iteration is
done when all worker threads finish the work allocated to
them. This way of splitting work is called “Data Sharding”
in DimmWitted.

Tuning parameter selection. As proposed in [17], the step
size η is reduced by a factor γ after each iteration. For each
dataset, we use the same step size parameters η0 (initial step
size) and γ (decay factors) for HOGWILD!, HOGWILD++ and
DimmWitted. We obtained optimal parameters η∗0 , γ∗ using
grid search on single-threaded HOGWILD! (in fact, all three
algorithms are essentially the same in single-threaded mode).
Because HOGWILD++ and DimmWitted need to synchronize
multiple model replicas, they usually need more iterations
to converge. Thus, for HOGWILD++ and DimmWitted we
set γ = M

√
γ∗, where M is the number of model replicas.

PASSCoDe does not need to select a step size because it
is a coordinate descent based algorithm. HOGWILD++ has an
additional parameter τ0 to set the delay for passing the token to
the next cluster. In experiments we found that our algorithm
is not sensitive to this parameter, so we set τ0 = 64 when
c = 10, and τ0 = 16 when c = 1, 2, 5 for all datasets.

A. Efficiency

The main objective of this work is to develop an algorithm
that can scale to use all the cores of a NUMA machine effec-

3http://i.stanford.edu/hazy/victor/Hogwild/
4http://www.cs.utexas.edu/∼rofuyu/passcode-icml15-exp/
5https://github.com/HazyResearch/dimmwitted



TABLE I
DATASET STATISTICS AND PARAMETERS USED IN EXPERIMENTS

Dataset size (non-zero elements) # training samples # test samples # features sparsity (nnz%) initial step size η0 step decay γ
news20 139.1 MB 16,000 3996 1,355,191 0.0336 % 0.5 0.8
covtype 115 MB 464,810 116,202 54 22.12 % 5× 10−3 0.85

webspam 459.0 MB 280,000 70,000 254 33.52 % 0.2 0.8
rcv1 715.5 MB 677,399 20,242 47,236 0.155 % 0.5 0.8

epsilon 14.9 GB 400,000 100,000 2,000 100 % 0.1 0.85

tively. So, the first experiment is to compare the performance
of all the implementations on 40 cores. Figure 2(a), 3(a), 4(a)
and 5(a) show the primal objective function values in terms of
wall clock time, and Figure 2(b), 3(b), 4(b) and 5(b) show the
prediction accuracy on the test set in terms of wall clock time.
To avoid clutter and ensure clarity only HOGWILD++-c5,10
is shown in this set of figures. A more detailed comparison
with different cluster size c is presented in Section VI-C.

Based on these results, we make the following observations:

• Our proposed algorithm converges much faster than HOG-
WILD! on most of the datasets.

• DimmWitted-PerNode and HOGWILD++-c10 both
have 4 model replicas, and the differences between
the two are primarily synchronization strategies (averag-
ing vs passing along a ring). Our experiments shows
that HOGWILD++-c10 is faster than or on-par with
DimmWitted-PerNode. This indicates that our model syn-
chronization approach performs better than simple model
averaging. For certain datasets with a small feature size (like
covtype), HOGWILD++-c5 and HOGWILD++-c2 could
be faster than both HOGWILD++-c10 and DimmWitted-
PerNode. DimmWitted-PerMachine shows almost iden-
tical results as HOGWILD! because they are essentially the
same algorithm, so we omit it in all our figures.

• news20 is the only dataset where our algorithm performs
similar to HOGWILD!. The main reason is that news20 has
a very large feature size and is very sparse, so HOGWILD!
almost has no memory conflicts when accessing the shared
model parameters. Also, due to its sparsity, the SGD updates
to w can be conducted very efficiently, while HOGWILD++

needs more time to synchronize a dense model vector w
with 1, 355, 191 elements. For the same reason, DimmWit-
ted does not perform well on news20: both PerCore
and PerNode approaches are slower than HOGWILD!. For
very high-dimensional sparse datasets, c = 40 (or the
total number of cores) can be used, making HOGWILD++

equivalent to HOGWILD!.
• PASSCoDe-Wild cannot converge to global minimum due

to the conflicting writes to the shared model vector. In [6],
this phenomenon is acceptable using 10 cores. However,
when scaling to 40 cores on multiple sockets, write conflicts
become a severe problem. Since the convergence point of
PASSCoDe-Wild is too far from the solution of rcv1, cov-
type and webspam, we omit PASSCoDe in those figures.

• HOGWILD! does not converge to the optimal solution in
covtype using the given step size and decay (which is opti-
mal for single-threaded HOGWILD!), probably because the
high number of model write conflicts reduce its efficiency.
Our algorithm converges well on all the datasets using the

same step size and decay that are optimal for the single-
threaded version. We do not need to tune these parameters
for a different number of threads or a different cluster size
c. This suggests that our algorithm is robust and suitable for
different parallel scenarios.

B. Scaling in Number of Cores
For the second experiment, we vary the number of cores

from 1 to 40, and plot the speedup of all the competing
algorithms. For each method, we measure the speedup by the
following criterion:

speedup =
iteration time taken by the method with 1 threads
iteration time taken by the method with p threads

.

Note that both HOGWILD! and HOGWILD++ share the same
code base, so the performance of the serial version is the same.
The experimental results are presented in Figure 2(c), 3(c),
4(c) and 5(c). The results also show the impact of cluster size
c on the speedup with HOGWILD++ . Based on these results,
we make the following observations:
• The speedup of HOGWILD! and PASSCoDe suddenly drops

when the number of threads is greater than 10, which is
the number of cores in a single socket. This indicates that
they are not able to scale to multiple sockets. In fact, when
using multiple sockets their speedup is often worse than
using 10 threads, and sometimes even worse than using
one thread (speedup < 1). In comparison, HOGWILD++

has almost linear speedup with increasing number of cores,
across multiple sockets.

• We also compare HOGWILD++ using different sizes of
clusters. When using one core per cluster (HOGWILD++ -
c1), the algorithm has the best speedup, while the speedup
decays slightly when we increase the number of cores per
cluster. The speed of convergence with different cluster sizes
is shown in Section VI-C.

• Clearly, DimmWitted does not scale very well. Even though
DimmWitted-PerCore has the same number of model
replicas as HOGWILD++-c1 , it does not scale as well. We
believe this is due to the model averaging synchronization
strategy used by DimmWitted. We also identified serial
sections and unnecessary overheads in DimmWitted that
limit its scalability. We will discuss issues we found in
DimmWitted in detail in section VI-D.

C. The parameter c in HOGWILD++

As discussed in the previous section, the parameter c that
controls the number of cores per cluster is very important in
HOGWILD++ , so here we experimentally study the impact
using three datasets: covtype, rcv1 and epsilon. We run
HOGWILD++ with c = 1, 2, 5, 10, and plot the convergence
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Fig. 7. rcv1 with different cluster size c
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Fig. 8. epsilon with different cluster size c

speed in terms of objective function value and prediction
accuracy. Note that HOGWILD! is the same case as c = 40, so
we also include it in the results for comparison. The results
are presented in Figure 6, 7 and 8. One can draw the following
conclusions from these results:

• There is a tradeoff problem in choosing c. A larger c often
leads to faster descent per iteration, but each update becomes
slower due to the memory sharing problem within each
cluster. In most of the datasets (such as Figure 7 and 8),
c = 10 achieves the best performance. But on covtype
dataset (Figure 6), c = 2 instead of c = 10 is the best.

• For all the values of c that we investigated, we can see
that HOGWILD++ is better than HOGWILD! on covtype,
rcv1 and epsilon datasets. Based on Figure 6(a), 7(a),
8(a) and 2(a), 3(a), 4(a), 5(a), we would recommend using
c = 10 (or the number of cores per socket) on datasets with
unknown characteristics, which minimizes expensive inter-
socket communication while keeping the number of model
replicas as small as possible. This is the same conclusion as
made in DimmWitted [24], where the PerNode approach
works best on most datasets. But certain datasets, especially
datasets with a small feature size (like covtype), do benefit
from a smaller cluster size c. HOGWILD++ enables us to
make a finer trade-off between hardware efficiency and
statistical efficiency by selecting a good c for a given dataset.

D. Issues in DimmWitted

In this section we will discuss issues we discovered in
DimmWitted that impact its performance and accuracy, and try
to understand why HOGWILD++ outperforms DimmWitted.

Model Averaging. We found that when PerCore approach
is used, each thread does not communicate with other threads
to exchange model information. Instead, models from all the
threads are averaged after each iteration and returned to the
caller. However, this averaged model is never written back
to each worker thread. This is equivalent to training multiple
models independently and using the average as the final model.
Because threads do not communicate model information with
each other, this approach is very inefficient statistically, and
it probably explains why the convergence of PerCore is the
slowest on every dataset.

In [24], authors claim that the optimal way for synchro-
nizing models is to “communicate as frequently as possible”,
given the sufficient QPI Interconnect bandwidth. Indeed, in
the PerNode approach, DimmWitted launches one additional
communication thread per node at the beginning of each
iteration, and this thread is responsible for averaging models
from all nodes and updating its own model. However, this
communication thread just computes the average once and
quits. We are not sure whether it was just an implementation
error or it is intentional. For datasets with a large number of
training samples (like rcv1), just communicating once during
an entire iteration might be insufficient. HOGWILD++ does not
have this problem because the model information is constantly
passing among clusters so it can adapt to different sample
sizes. Also, model averaging in DimmWitted requires global
communication for synchronization and thus its scalability is
limited in multi-socket or distributed situations.

Data Sharding. We found that in DimmWitted and its pro-



vided Logistic Regression (LR) example 6, while data sharding
is enabled, the training data samples are not permuted. Conse-
quently, when PerCore approach is used, since each model is
trained independently (as described in the previous paragraph),
each thread trains a model specifically for a subset of the
training examples. When computing the loss and accuracy as
shown in the example LR application, each thread uses its
own model instead of the averaged model, making the training
accuracy abnormally high. In our experiment, we fixed this
problem by shuffling training samples after each iteration,
and creating an additional DimmWitted engine instance for
evaluating loss using the averaged model.

Overhead and Serial Bottleneck. DimmWitted uses
std::async to launch new worker threads at the beginning
of each iteration, and destroys them at the end of each
iteration. Each thread also has to be bind to the correct core or
node each time an iteration starts. The use of std::async
makes the code simple and elegant, albeit the overhead of
making and destroying threads cannot be ignored. Also, in
the implementation of both PerCore and PerNode, after all
worker threads finish their work for the current iteration, the
main thread averages all models sequentially. We understand
this implementation follows the map-reduce design pattern, but
this serial section is not negligible, especially on the dataset
with a large model (news20). In HOGWILD++ , we use the
model from the last thread holding the token as the latest
model, instead of averaging all models. When the number of
threads is large, the threading overhead and serial section make
DimmWitted show poor speedup.

VII. CONCLUSION AND FUTURE WORK

This work is motivated by the observation that existing
asynchronous SGD algorithms cannot scale to many cores or
multiple NUMA sockets in a single machine. To overcome
this issue, we develop a new asynchronous SGD algorithm,
HOGWILD++ . The main idea is to replicate the model param-
eter into several copies, and the communication is done in an
asynchronous but carefully designed way to ensure the conver-
gence. We show our algorithm can get almost linear speedup
on a 40 core NUMA machine, while existing algorithms
show very limited speedup. We leave the evaluation of the
proposed algorithm on other network topology in distributed
computing environments as future work. We also plan to
extend the proposed techniques to other iterative solvers, such
as coordinate descent or ADMM.
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