
Fixing the Convergence Problems in Parallel
Asynchronous Dual Coordinate Descent

Huan Zhang
Dept. of Electrical and Computer Engineering

University of California, Davis
Davis, CA 95616, USA

Email: ecezhang@ucdavis.edu

Cho-Jui Hsieh
Depts. of Computer Science and Statistics

University of California, Davis
Davis, CA 95616, USA

Email: chohsieh@ucdavis.edu

Abstract—Solving L2-regularized empirical risk minimization
(e.g., linear SVMs and logistic regression) using multiple cores
has become an important research topic. Among all the existing
algorithms, Parallel ASynchronous Stochastic dual Co-Ordinate
DEscent (PASSCoDe) demonstrates superior performance com-
pared with other methods. Although PASSCoDe is fast when
it converges, the algorithm has been observed to diverge on
several cases especially when a relatively large number of threads
are used. This is mainly due to the delayed parameter access
problem—the parameters used for the current update may be
delayed and are not the latest ones. In theory, the algorithm
converges only when the delay is small enough, but in practice the
delay depends on the underlying parallel computing environment
and cannot be guaranteed. In this work, we propose a simple
and computational efficient way to fix the convergence problem
of PASSCoDe. Instead of allowing all worker threads to conduct
asynchronous updates wildly, we add periodic check points to the
procedure, where all workers need to stop and refine the current
solution at each check point. The resulting “semi-asynchronous”
algorithm is guaranteed to converge for any problem even when
PASSCoDe diverges, and for the cases where PASSCoDe converges
they have almost identical speed.

Keywords—Coordinate descent, Asynchronous algorithm

I. INTRODUCTION

Many machine learning problems involve solving L2-
regularized Empirical Risk Minimization (ERM) prob-
lems. Famous examples include Support Vector Machines
(SVMs) [3] and logistic regression. Many optimization tech-
niques have been developed for solving these problems [15],
[23], [10], [6]. Among these algorithms, Stochastic Dual
Coordinate Descent (DCD) [6], [16] outperforms others for
solving large-scale linear SVMs and logistic regression, and
has been implemented as the default solver in LIBLINEAR [5].

Due to the increasing need of handling big data, par-
allelizing stochastic dual coordinate descent has become a
very important research topic. For multi-core shared memory
systems, Parallel Asynchronous Stochastic Dual Coordinate
Descent (PASSCoDe) proposed in [7] is a simple but efficient
way to parallelize DCD. In this algorithm, all the threads
conduct dual coordinate descent updates asynchronously in
parallel, and the communication is implicitly done by reading
and writing variables stored in the shared memory space. Since
each thread does not need to idle and wait for other threads,
PASSCoDe enjoys good speedup and outperforms existing

0 5 10 15 20

Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
af

te
r

10
0

it
er

at
io

ns

Convergence of PASSCoDe (Atomic)

a9a
webspam
covtype
rcv1
epsilon
music
news20

Fig. 1: We run PASSCoDe-Atomic for SVM with squared hinge loss on 7
classification datasets on a dual-socket 20-core machine, and collect prediction
accuracy after 100 iterations. Accuracy drops to 0 when PASSCoDe-Atomic
outputs NaN, indicating it has severely diverged. We vary the number of
threads from 1 to 20, and on 3 of the 7 datasets (a9a, covtype, music)
PASSCoDe-Atomic diverges before we reach the maximum available par-
allelism. PASSCoDe-Atomic becomes less stable on webspam when using
20 threads. Also, when using 11 threads, PASSCoDe-Atomic behaves quite
differently than using 10 threads on a9a and covtype. This is because starting
from the 11-th thread, threads are allocated to the second CPU socket.

parallel algorithms. However, the convergence properties of
PASSCoDe is non-trivial since asynchronous updates lead to
delayed parameter access—the parameters used for the current
update may not be the latest ones. Fortunately, Hsieh et al.
[7] theoretically proves that the algorithm will converge if this
“delay” is small enough. It has been shown in [7] that the
algorithm performs very well on many large-scale datasets.

Although PASSCoDe is fast when it converges, it is hard
to know whether the “delay” is small enough in practice.
Since this delay is determined by the underlying hardware and
cannot be easily adjusted, we never know whether the algo-
rithm will converge. Figure 1 shows that PASSCoDe diverges
on some real-life classification datasets, and it can diverge
when only 6 threads are used (in covtype). Also, PASSCoDe’s
performance is sensitive to the underlying parallel computing
environment, because we observe that for a9a and covtype,
PASSCoDe behaves quite differently when the second CPU
socket starts being used. With this issue, it is questionable
whether asynchronous dual coordinate descent algorithm is



useful in practice.
In this paper, we propose a simple and computational

efficient way to fix this convergence problem in parallel asyn-
chronous stochastic dual coordinate descent (PASSCoDe). Our
proposed algorithm, PASSCoDe-fix, is as fast as PASSCoDe
but is guaranteed to converge to the optimal solution. Our
contributions can be summarized below:
• To avoid divergence, we design a procedure to periodically

adjust the dual coordinate descent updates by scaling the
update vector, and this scaling factor can be computed very
efficiently by exploiting the primal-dual relationship.

• In some cases the updates are in totally wrong directions
due to a huge delay, and no scaling factor can sufficiently
decrease the dual objective. When this is the case, we use a
modified PASSCoDe algorithm with a conservative step size
γ < 1 for future iterations. We reduce γ every time when
this situation is detected, and this allows the value of γ to
be automatically adjusted.

• The resulting algorithm, PASSCoDe-fix, is simple, efficient,
and guaranteed to converge to the optimal solution. We show
empirically that PASSCoDe-fix converges for all datasets
even when PASSCoDe diverges, and for the cases where
PASSCoDe converges they have almost identical speed.

The rest of the paper is organized as follows: in Section II
we summarize related work. In Section III we introduce the
PASSCoDe algorithm proposed in [7]. In Section IV we detail
our proposed algorithm and show the algorithm is guaranteed
to converge. In Section V we conduct experiments on real-
world datasets. The work is concluded in Section VI, and all
the detailed proofs are in Appendix (Section VII).

II. RELATED WORK

Stochastic (Dual) Coordinate Descent. Coordinate de-
scent is a classical optimization algorithm that updates a single
variable at a time and has been studied extensively. Recently,
several papers showed coordinate descent is very efficient
for solving machine learning problems when the variable-to-
update is chosen randomly [12], [6]. In this paper, we focus
on the family of Dual Coordinate Descent (DCD) algorithms
that applies stochastic coordinate descent to solve the dual
problem while maintaining the primal solution via the primal-
dual relationship. This was first used for solving linear SVMs
in [6] and discussed as a general framework in [16]. It has
been shown that DCD is one of the most efficient algorithms
for solving L2-regularized empirical risk minimization prob-
lems including SVMs [6], logistic regression [19], multi-class
classification [8] and many others.

Parallel Asynchronous (Dual) Coordinate Descent. Due
to the success of stochastic (dual) coordinate descent, its
parallel counterpart has become an important research topic
(see [2], [14]). In a multi-core shared memory system, paral-
lel asynchronous coordinate descent ([11], [1]) is the most
efficient approach, where each thread conducts updates in-
dependently, and the communication is implicitly done by
accessing variables in the shared memory space. Recently, [7]

(PASSCoDe) extended the algorithm to dual coordinate descent
and demonstrates good speedup on large datasets.

Other Parallel Asynchronous Algorithms. Due to the
efficiency of asynchronous updates, there are many other asyn-
chronous algorithms proposed recently. [13], [22] proposed
an asynchronous stochastic gradient descent algorithm and
has been widely used. [4] applied an asynchronous algorithm
on distributed system for deep learning. [20], [18] proposed
asynchronous algorithms for matrix completion and Latent
Dirichlet Allocation (LDA). [9], [17] developed parameter
servers for conducting asynchronous updates on distributed
systems. In this paper, we focus only on fixing the convergence
problem of asynchronous dual coordinate descent, but the
problem of delayed parameter access happens in almost all the
asynchronous algorithms, so it might be interesting to extend
our idea to fix or improve the convergence of other algorithms.

III. BACKGROUND

We first review parallel asynchronous stochastic dual coordi-
nate descent proposed in [7]. Given training samples {xi}ni=1

and corresponding labels {yi}ni=1, where xi ∈ Rd and yi can
be either ±1 or real numbers, we focus on the following `2-
regularized Empirical Risk Minimization (ERM) problem:

min
w∈Rd

P (w) :=
1

2
‖w‖2 +

n∑
i=1

`i(w
Txi), (1)

where `i(·) is the loss function that may depend on labels,
and ‖ · ‖ is the 2-norm. Many machine learning problems
belong to this category, including SVM (hinge loss), L2-SVM
(squared hinge loss), logistic regression (logistic loss) and
ridge regression (square loss). The dual problem of (1) can
be written as

min
α∈Rn

D(α) :=
1

2

∥∥∥∥∥
n∑
i=1

αixi

∥∥∥∥∥
2

+

n∑
i=1

`∗i (−αi), (2)

where `∗i (·) is the conjugate of the loss function `i(·), defined
by `∗i (u) = maxz(zu − `i(z)). For each dual vector α, we
can define the corresponding primal vector w by the following
primal-dual relationship (see [16] for more details):

w(α) =
∑n

i=1
αixi. (3)

At the optima, w(α∗) = w∗ and P (w∗) = −D(α∗) where
w∗,α∗ are the primal and dual optimal solutions respectively.

A. Stochastic Dual Coordinate Descent
Stochastic Dual Coordinate Descent (DCD) is one of the

most widely-used approach to solve the L2-regularized ERM
problem and is implemented in LIBLINEAR [5]. It solves
the dual form of ERM problem (2) while in the same time
maintaining a primal solution by Eq (3).

At each iteration, DCD randomly selects a dual variable αi
and updates its value by αi ← αi + δ∗, where

δ∗ = arg min
δ
D(α+ δei)

= arg min
δ

1

2
(δ +

wTxi
‖xi‖2

)2 +
1

‖xi‖2
`∗i (−(αi + δ)). (4)



This is just a single-variate proximal operator, so can often
be solved in O(1) time if wTxi and ‖xi‖ are known. ‖xi‖
can be pre-computed and remains unchanged during the whole
optimization procedure. Therefore, the main cost of computing
δ∗ is to compute wTxi. Without storing w, we have to re-
compute w by (3) every time, which requires O(nnz) time
complexity where nnz is the total number of nonzero elements
in the training data. The main trick proposed in DCD ([6],
[16]) is to maintain w in the memory, so the computational
cost of (4) can be reduced to O(d̄), where d̄ = (nnz)/n is the
averaged number of nonzero elements in each training sample.
As a result, the computational complexity is exactly the same
as primal-SGD, while DCD converges faster and there is no
need to select the step size. DCD is presented in Algorithm 1.

Algorithm 1 Stochastic Dual Coordinate Descent (DCD)

Require: Initial α and w =
∑n
i=1 αixi

1: while not converged do
2: Randomly pick i
3: Update αi ← αi + δ∗, where

δ∗ ← arg min
δ

1

2
(δ +

wTxi
‖xi‖2

)2 +
1

‖xi‖2
`∗i (−(αi + δ)).

4: Update w by w ← w + δ∗xi
5: end while

B. Parallel Asynchronous Dual Coordinate Descent

Next we discuss the Parallel Asynchronous Dual Coordinate
Descent (PASSCoDe) algorithm proposed in [7] that paral-
lelizes DCD in multi-core shared memory systems. In this
algorithm, each thread repeatedly conducts coordinate updates
(step 2 to 4 in Algorithm 1) in parallel. Threads do not need
to explicitly synchronize the parameters because w and α will
be read from and written to the same shared memory space.

In [7], the authors proposed two ways1 to maintain w—
atomic or wild. In the wild version, the updates of w in step 4
of Algorithm 1 are unprotected and can be overwritten by other
threads, so it cannot converge to the optimal solution of (2).
In the atomic version, each update in step 4 uses an atomic
read-modify-write operation, which is slightly slower than wild
updates but ensures that the writes are not overwritten by other
threads. Therefore, the atomic version is more stable and has
been further used in practice. This algorithm is presented in
Algorithm 2.

C. Convergence Properties of PASSCoDe-Atomic

To discuss the convergence properties of Algorithm 2,
[7] assigns a global counter j for the updates and use
{α1,α2, · · · } to denote the sequence of dual solutions. The
ŵ used for computing the update from αj to αj+1 is the
“delayed” w but the delay will be smaller than τ (see the

1The authors of [7] also discussed another way of using explicit locking
but they showed that it is even slower than the single-thread version, so we
do not discuss it here.

Algorithm 2 Parallel Asynchronous Stochastic dual Co-
ordinate Descent (PASSCoDe-Atomic)

Require: Initial α and w =
∑n
i=1 αixi

Each thread repeatedly performs the following updates:
step 1: Randomly pick i
step 2: Update αi ← αi + δ∗, where

δ∗ ← arg min
δ

1

2
(δ +

wTxi
‖xi‖2

)2 +
1

‖xi‖2
`∗i (−(αi + δ)).

step 3: For each j ∈ N(i) := {t | (xi)t 6= 0}
Update wj ← wj + δ∗(xi)j atomically

definition in (11)). This means all the updates before iteration
(j−τ) are finished while updates between iteration (j−τ+1)
and (j − 1) may or may not be finished. In this case, [7]
proves the following lemma, showing that PASSCoDe-Atomic
converges to the optimal solution when τ is small enough:

Lemma 1 (A simplified version of Theorem 1 in [7]). Assume
the objective function admits the global error bound (see
Definition 1 in [7]) and is Lipschitz continuous. Then there
exist constants A, η such that when τ < A, PASSCoDe-Atomic
converges to the global optimum with a linear rate:

E[D(αj+1)]−D(α∗) ≤ η
(
E[D(αj)]−D(α∗)

)
,

where α∗ is the optimal solution.

Unfortunately, Lemma 1 suggests that the convergence of
PASSCoDe-Atomic is guaranteed only if the delay τ is
sufficiently small, and we have observed that on some real
datasets the algorithm will eventually diverge (see Figure 1).
In the next section, we propose an algorithm, PASSCoDe-fix,
to fix the convergence problems of PASSCoDe-Atomic.

IV. PROPOSED ALGORITHM

In PASSCoDe-fix, we periodically check and fix the updates
to ensure the convergence. The framework is presented in
Algorithm 3. Step 2 is the original PASSCoDe algorithm; after
running PASSCoDe for N coordinate updates, we propose a
new procedure to adjust the solution in Step 3 to avoid diver-
gence. This framework can be conceptually viewed as a family
of semi-asynchronous algorithms—instead of allowing all the
threads conduct asynchronous updates wildly, we add periodic
check points to the algorithm to ensure the convergence. When
N is large and the checkpoints (step 3) are computational
efficient, the run time of the semi-asynchronous algorithm will
be almost identical to the fully asynchronous version.

Now we propose an efficient and simple fixing procedure
for step 3 so that (1) the algorithm is guaranteed to converge
and (2) the fixing procedure is quick and parallelizable.

A. How to adjust the solution in Step 3?

We define the global dual and primal updates in Step 2 of
Algorithm 3 by:

∆α := α−αold, ∆w := w −wold,



Algorithm 3 Our proposed framework—An Overview

Require: Initial α and w =
∑n
i=1 αixi

For outer iter = 1, 2, · · ·
1. αold ← α, wold ← w
2. Run PASSCoDe with totally N updates using all the

threads to obtain α, w
3. Adjust solution α,w based on αold,wold

and we adjust the dual and primal solutions by

α := αold + β∆α, w := wold + β∆w. (5)

If β = 1 then there will be no adjustment made by this pro-
cedure, so the algorithm is identical to PASSCoDe. However,
for the cases where PASSCoDe diverges, a smaller β ∈ [0, 1)
can be used to keep the dual objective function value from
increasing. Therefore, we want to develop an efficient way to
find a β such that

D(αold + β∆α) is sufficiently smaller than D(αold).

We consider two cases of the loss functions `(·). In the first
case, the dual loss `∗(·) can be written as a quadratic function
with bounded constraints, and in the second case the dual loss
can be any general function. The first case include Support
Vector Machine (SVM) with hinge loss and L2-SVM (with
squared hinge loss), and we show there is a closed form
solution for the optimal β. The second case include logistic
regression, and we propose an efficient line-search to find a
good β value.

Case I: we assume the dual loss can be written as

`∗i (αi) = aiαi + biα
2
i + I(αi ∈ [ci, di]), ∀i (6)

where ai, ci, di are arbitrary real numbers, bi ≥ 0 since `∗i (αi)
is convex, and I(αi ∈ [ci, di]) = 0 if αi ∈ [ci, di], I(αi ∈
[ci, di]) = ∞ if αi /∈ [ci, di]. SVM and L2-SVM belongs to
this category:

SVM: `i(wTxi) = max(1− yiwTxi, 0),

`∗i (αi) = yiαi + I(yiαi ∈ [−1, 0])

L2-SVM: `i(wTxi) = max(1− yiwTxi, 0)2,

`∗i (αi) = α2
i /4 + yiαi + I(yiαi ∈ [−∞, 0]).

In this case, the dual objective function can be written as:

D(αold + β∆α) =
1

2
‖wold + β∆w‖2 +

n∑
i=1

`∗i (−αold
i − β∆αi)

=

(
1

2
∆wT∆w +

n∑
i=1

bi∆α
2
i

)
β2 +

(
∆wTwold −

n∑
i=1

ai∆αi

+

n∑
i=1

2biα
old
i ∆αi

)
β +

n∑
i=1

I(−αold
i − β∆αi ∈ [ci, di]).

Both αold
i (the previous iterate) and the current iterate αold

i +
∆αi belong to [ci, di] due to the DCD update rule, so the

constraints will hold for all β ∈ [0, 1]. We then propose to
find the optimal β in this range:

β∗ = arg min
β∈[0, 1]

D(αold + β∆α)

= arg min
β∈[0, 1]

Aβ2 +Bβ

= max(min(−B/(2A), 1), 0) (7)

where

A =
1

2
∆wT∆w +

n∑
i=1

bi∆α
2
i ≥ 0

B = ∆wTwold −
n∑
i=1

ai∆αi +

n∑
i=1

2biα
old
i ∆αi. (8)

Both A and B can be computed in O(n + d) time, so the
time complexity for computing β∗ is only O(n + d). When
we set N = n in Algorithm 3, PASSCoDe in step 2 will
require O(nnz) time, so the amortized cost is very small.
Furthermore, computing A and B can be embarrassingly
parallelized. Finally, we need to discuss the case when β∗ = 0.
From (7) we can see

β∗ = 0 ⇔ B ≥ 0 ⇔ ∂βD(αold + β∆α) |β=0≥ 0.

This means ∆α computed by PASSCoDe is not even a descent
direction. In this case, α remains unchanged at this iteration,
and we will discuss how to handle this in the next subsection
(Section IV-B).

Case II: in the second case we consider a general loss
function where the dual loss cannot be written as (6). In
this case, the optimal β may not have a closed form solu-
tion, so we conduct a typical Armijo-rule backtracking line
search to search for a good β. More specifically, we try
β = {1, 12 , 14 , · · · } until it satisfies the following sufficient
decrease condition:

D(αold + β∆α) ≤ D(αold)− σβ
∣∣∂βD(αold + β∆α) |β=0

∣∣
with some constant σ ∈ (0, 1). Computing

∂βD(αold +β∆α) |β=0= ∆wTwold−
n∑
i=1

(∆αi)(∂`
∗
i (−αold

i ))

requires O(n + d) time complexity and is just a one-time
cost. For each β, the dual objective function can be computed
efficiently by exploiting the primal-dual structure:

D(αold + β∆α) =
1

2
‖wold‖2 + (∆wTwold)β +

‖∆w‖2
2

β2

+

n∑
i=1

`∗i (−αold
i − β∆αi). (9)

∆wTwold and ‖∆w‖2 can be pre-computed and used for any
β, so each function value evaluation of (9) only requires O(n)
time complexity.

In summary, if the dual loss cannot be written as (6), we use
a line search procedure to find a β. If there are T line search
steps, the overall procedure (Step 3 of Algorithm 3) requires



O(d + Tn) time complexity. This can also be parallelized,
and the amortized cost per coordinate descent update is not
too high. However, the same problem in case I may also arise
here: if ∆α is not a descent direction (subgradient ∂βD(αold+
β∆α) |β=0 is non-negative), the step size β will be 0, and in
this iteration we cannot make any progress.

B. How to handle the case when ∆α is not a descent
direction?

In the previous section we have discussed how to adjust the
updates when ∆α computed in step 2 of Algorithm 3 is a
descent direction (∇βD(α + βα) |β=0< 0). This looks like
a reasonable assumption to make, but unfortunately in some
of the datasets we do observe the situation that ∆α is not a
descent direction. Therefore, to ensure the convergence of the
whole procedure, we have to further fix this case.

To overcome this issue, we first introduce a generalized
version of the DCD update with a step size. The new DCD
update rule can be written as:

δ∗ = arg min
δ

1

2γ
(δ +

γwTxi
‖xi‖2

)2 +
1

‖xi‖2
`∗i (−(αi + δ)).

= arg min
δ

1

2γ
δ2 +

wTxi
‖xi‖2

δ +
1

‖xi‖2
`∗i (−(αi + δ)) (10)

In (10), we add a weight 1
γ to the quadratic term where γ ∈

(0, 1) so each coordinate descent update is more conservative.
This is similar to using a smaller step size in proximal gradient
method. The modified PASSCoDe algorithm is in Algorithm 4.

Algorithm 4 PASSCoDe-γ(α, w)

Require: Initial α and w =
∑n
i=1 αixi

Each thread repeatedly performs the following updates:
step 1: Randomly pick i
step 2: Update αi ← αi + ∆αi, where

δ∗ ← arg min
δ

1

2γ
δ2 +

wTxi
‖xi‖2

δ+
1

‖xi‖2
`∗i (−(αi+δ))

step 3: For each j ∈ N(i)
Update wj ← wj + δ∗(xi)j atomically

Intuitively, when we use a smaller γ, the updates are
more conservative, so the error caused by delayed parameter
access will be milder and PASSCoDe-γ will be more likely
to converge. To formally prove this property, we define the
following notations. In PASSCoDe-γ, we can assign a global
counter j for the updates, and i(j) is the coordinate index
chosen by the j-th update. The sequence {α1,α2, · · · } is the
sequence of dual solutions, and we define

δj = αj+1
i(j) − α

j
i(j).

Since δj is computed by PASSCoDe-γ, we have

δj = arg min
δ

1

2γ
(δ+

γxTi(j)ŵ
j

‖xi(j)‖2
)2+

1

‖xi(j)‖2
`∗i (−(αji(j)+δ)),

where ŵj is the current w stored in the memory.
Since multiple threads conduct updates parallel asyn-

chronously, ŵj 6= w(αj). However, following [7] we assume
that for each iteration j, all the “writes” to w before τ
iterations are done. This can be formulated as:

ŵj = w(αj−τ ) +

j−1∑
t=j−τ+1

∑
k∈N(i(t))

ξj,t,kδ
t(xi(t))kek. (11)

where each ξj,t,k can be either 0 or 1, indicating whether the
update has been written into w.

Similar to [7], we define the following constants:

Mi = max
S⊆[d]

‖
∑
t∈S

X̄:,tXi,t‖, M = max
i
Mi,

where [d] := {1, . . . , d} is the set of all the feature indices, and
X̄:,t is the t-th column of the normalized data matrix X̄ (each
row of X̄ is xi/‖xi‖). Assume Rmin = mini ‖xi‖2 > 0 (no
xi = 0) and without loss of generality, we assume Rmax =
maxi ‖xi‖2 = 1. We can then prove the following lemma:

Lemma 2. Let ρ be a constant with ρ−1 < 1 − 4/
√
n, and

θ =
∑τ
t=1 ρ

t/2. If γ is small enough such that

γ ≤ (
√
n(1− ρ−1)− 4)/(4(1 + θ)M) (12)

then the sequence {αj} generated by PASSCoDe-γ satisfies
the following inequality:

E(‖αj−1 −αj‖2) ≤ ρE(‖αj −αj+1‖2), (13)

where E(·) is the expectation with respect to the indices
selected in stochastic dual coordinate descent.

The proof is in the Appendix. Note that ρ can be any number
satisfies ρ−1 < 1−4/

√
n, and this ensures the right hand side

of (12) is a positive number. As a result, as we select γ small
enough, (12) will be satisfied. In contrast, the condition in
Lemma 1 of [7] may not be satisfied, which is the reason that
PASSCoDe diverges on some datasets.

We can then derive the following main theorem:

Theorem 1. Assume the objective function (2) admits a
global error bound with a constant κ from the beginning (see
Definition 1 in [7]) and the Lipschitz constant Lmax is finite
in the level set. If γ is small enough such that (12) holds and(

1 +
eτMγ√

n

)(
τ2γ2M2e2

n

)
≤ Rmin

2Lmax
≤ 1

where e is the natural logarithm base, then PASSCoDe-γ has
a global linear convergence rate in expectation, that is,

E[D(αj+1)]−D(α∗) ≤ η
(
E[D(αj)]−D(α∗)

)
, (14)

where α∗ is the optimal solution and

η = 1− κ

Lmax

(
1− 2Lmax

Rmin

(
1 +

eγτM√
n

)(
τ2M2e2γ2

n

))
.

Note that the global error bound assumption is a weaker
version of strong convexity, and it has been shown in [7] that



this assumption covers linear SVM, L2-SVM, and logistic
regression. Compared with the proof in PASSCoDe [7], we
have a γ factor in our update rule to ensure the convergence
of the algorithm, while they only consider the special case
γ = 1 so the convergence will not hold when τ (delay) is
large. Compared with the analysis of general asynchronous co-
ordinate descent [11], we consider the dual coordinate descent
where the inconsistent read can happen when maintaining the
w vector, where they do not have inconsistent read in w (see
Section 4 in [7] for the detailed discussion about this). Also,
the update rule is different from [11].

Based on Theorem 1, we can see ∆α will decrease the
objective function value with a linear rate if γ is small enough.
Therefore, in PASSCoDe-fix, if β∗ = 0 (which means ∆α is
not a descent direction), we decrease γ by half in the next
iteration. As a result, our algorithm can keep decreasing γ
until it is small enough to ensure the global convergence.

In summary, our PASSCoDe-fix algorithm is presented in
Algorithm 5. Here we only present the case for case I (dual
loss satisfies (6)); the algorithm for case II is similar but the
closed form solution β∗ is replaced by line search.

Algorithm 5 Our proposed algorithm: PASSCoDe-fix

Require: Initial α and w =
∑n
i=1 αixi, γ = 1

For outer iter = 1, 2, · · ·
1. αold ← α, wold ← w
2. Run PASSCoDe-γ (Algorithm 4) with totally N

updates using all the threads to obtain α, w
3. Compute A,B by (8).
4. If B ≥ 0:

β∗ ← 0, γ ← γ/2
Else:
β∗ ← max(min(−B/(2A), 1), 0)

5. α← αold + β∗(α−αold),w ← wold + β∗(w−wold)

V. EXPERIMENTAL RESULTS

A. Implementation

Our implementation is based on the publicly available C++
code of PASSCoDe 2. It was developed under the code base
of LIBLINEAR with OpenMP parallelization. We implement
our Algorithm 5 for both L1-SVM and L2-SVM. The major
computation added in PASSCoDe-fix is (7) and (8), and we
parallelize them as well to avoid unnecessary serial bottleneck.
Our implementation is publicly available 3.

In practice, in PASSCoDe sometimes α can go to ±∞
(exceeds the maximum floating point number) due to the diver-
gence of asynchronous updates. In those cases, the calculation
of our fixing procedure in Eq (7) will get NaN according to
IEEE 754-1985. Therefore, in our code we will set α = αold,
w = wold and γ = 1

2γ when we detect β∗ is NaN.

2http://www.cs.utexas.edu/∼rofuyu/exp-codes/passcode-icml15-exp/
3http://huanzhang12.github.io/passcode-fix/

TABLE I: Dataset statistics

Dataset # train samples # test samples # features nnz%
a9a 32,561 16,281 123 11.3 %

covtype 464,810 116,202 54 22.12 %
news20 16,000 3996 1,355,191 0.034 %

webspam 280,000 70,000 254 33.52 %
rcv1 677,399 20,242 47,236 0.155 %

music 463,715 51,630 91 1
epsilon 400,000 100,000 2,000 1

B. Experiment Setup and Datasets

We performed our experiments on a dual-socket E5-2680 v2
machine with 20 physical cores and hyperthreading disabled.
We explicitly set thread affinities so that the worker threads
are bind to as few CPU socket as possible. We conduct
our experiments on solving the L2-SVM (with squared hinge
loss) problem, but our algorithm can also be applied to other
objective functions. For simplicity, we set the regularization
parameter C = 1. In all our experiments, we use the atomic
version of PASSCoDe and PASSCoDe-fix. The wild version of
PASSCoDe cannot converge to the same solution due to the
conflicting writes to w. Note that all the algorithms (including
our method) do not have any additonal parameter to set (except
C), so the experiments can be easily reproduced.

We run our experiments on a wide range of datasets with
different characteristics: a9a, covtype, music, rcv1, news20,
epsilon, webspam (unigram). Among them, music is down-
loaded from UCI 4 and transformed into binary class, other
datasets are downloaded from LIBSVM website 5. For music,
a9a, epsilon and rcv1 we use the standard training/testing
partition suggested by their source, and for other datasets we
split them randomly into 80% for training and 20% for testing.

0 5 10 15 20

Number of Threads

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
af

te
r

10
0

it
er

at
io

ns

Convergence of PASSCoDe-fix (Atomic)

a9a
webspam
covtype
rcv1
epsilon
music
news20

Fig. 2: Convergence of PASSCoDe-fix

a) Convergence of PASSCoDe-fix: Similar to Figure 1,
we run PASSCoDe-fix with up to 20 threads and show the
impact of more threads on classification accuracy after 100
iterations in Figure 2. PASSCoDe-fix exhibits excellent stabil-
ity: it converges on all datasets, regardless of the number of
threads used (a9a and music will get more stable accuracy if
we run more iterations, but for a fair comparison with Figure 1

4http://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
5http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html



we run all datasets with 100 iterations). Also, unlike Figure 1,
accuracy does not jump when the number of thread changes
from 10 to 11; PASSCoDe-fix is not affected when the second
CPU socket starts being used and shows predictable behavior.

b) Efficiency of PASSCoDe-fix: In this experiment, we
run PASSCoDe-fix and PASSCoDe with 20 threads, and com-
pare their primal objective function values and test accuracy
in terms of training time in Figure 3, 4, 5, 6, 7 and 8. We also
add a single thread reference of PASSCoDe in these figures,
showing the best accuracy and objective value that PASSCoDe
can achieve. Usually, single thread PASSCoDe converges better
in terms of number of iterations because there is no delay in
updating α and w, but it needs more time for each iteration.

We can made the following observations from these results:
• PASSCoDe-fix is able to converge on all the datasets. In

comparison, PASSCoDe diverges (out of range in figures)
or oscillates badly on a9a, covtype and webspam.

• PASSCoDe-fix converges to the same (or very close) primal
objective as the single-thread version does. This verifies our
theoretical guarantee that PASSCoDe-fix converges to the
optimal solution.

• on the dataset where PASSCoDe does converge well,
PASSCoDe-fix shows minimal overhead. For epsilon and
rcv1, PASSCoDe-fix is almost as fast as PASSCoDe. Since
PASSCoDe-fix needs O(n+d) time in the fixing step and in
news20 O(nnz) is comparable to the large d = 1, 355, 191.
PASSCoDe-fix is slightly slower than PASSCoDe.

• In a9a (the smallest dataset), we can see that single thread
PASSCoDe converges faster than using 20 threads. However,
our profiling results show that this slow down is not related
to the fixing step we proposed. Instead, it comes from the
cache coherence overhead of accessing a shared w among
multiple cores during the coordinate updates. Improving
PASSCoDe’s performance in highly parallel situations using
techniques proposed in [21], [22] is our future work.

VI. CONCLUSIONS

Parallel Asynchronous Stochastic Dual Coordinate Descent
(PASSCoDe) is the most promising algorithm to solve linear
SVM and logistic regression in shared memory multi-core
systems. Unfortunately, the convergence is not always guaran-
teed and it has been observed that the algorithm diverges on
several cases In this paper, we propose a simple and efficient
way to fix this convergence problem. Instead of allowing all
the threads conduct updates wildly, we add periodic check
points to enforce the convergence. The resulting algorithm,
PASSCoDe-fix, is guaranteed to converge for any datasets and
has minimal overhead when PASSCoDe also converges. The
results are verified theoretically and empirically on real-world
datasets. This idea of “semi-asynchronous” updates could be
potentially applied to other asynchronous algorithms.

Acknowledgments. The authors are grateful to the XSEDE
startup resources.

REFERENCES

[1] Haim. Avron, Alex. Druinsky, and Anshul Gupta. Revisiting asyn-
chronous linear solvers: Provable convergence rate through random-

ization. In IEEE International Parallel and Distributed Processing
Symposium, 2014.

[2] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin.
Parallel coordinate descent for l1-regularized loss minimization. In
International Conference on Machine Learning (ICML), pages 321–328,
2011.

[3] Corina Cortes and Vladimir Vapnik. Support-vector network. Machine
Learning, 20:273–297, 1995.

[4] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in Neural Informa-
tion Processing Systems, pages 1223–1231, 2012.

[5] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. LIBLINEAR: a library for large linear classification.
Journal of Machine Learning Research, 9:1871–1874, 2008.

[6] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and
Sellamanickam Sundararajan. A dual coordinate descent method for
large-scale linear SVM. In ICML, 2008.

[7] Cho-Jui. Hsieh, Hsiang-Fu. Yu, and Inderjit. S. Dhillon. PASSCoDe:
Parallel ASynchronous Stochastic dual Coordinate Descent. In Interna-
tional Conference on Machine Learning (ICML),, 2015.

[8] S. S. Keerthi, S. Sundararajan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin.
A sequential dual method for large scale multi-class linear SVMs. In
KDD, 2008.

[9] Mu Li, Dave Andersen, Alex Smola, Junwoo Park, Amr Ahmed, Vanja
Josifovski, James Long, Eugene Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2014.

[10] Chih-Jen Lin, Ruby C. Weng, and S. Sathiya Keerthi. Trust region
Newton method for large-scale logistic regression. In ICML, 2007.

[11] Ji. Liu and Stephen. J. Wright. Asynchronous stochastic coordinate
descent: Parallelism and convergence properties. arXiv:1403.3862, 2014.

[12] Yurii E. Nesterov. Efficiency of coordinate descent methods on huge-
scale optimization problems. SIAM Journal on Optimization, 22(2):341–
362, 2012.

[13] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright.
HOGWILD!: A lock-free approach to parallelizing stochastic gradient
descent. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and
K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems 24, pages 693–701, 2011.

[14] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods
for big data optimization. Mathematical Programming, 2012. Under
revision.

[15] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: primal
estimated sub-gradient solver for SVM. In Proceedings of the Twenty
Fourth International Conference on Machine Learning (ICML), 2007.

[16] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent
methods for regularized loss minimization. Journal of Machine Learning
Research, 14:567–599, 2013.

[17] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak
Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu.
Petuum: a new platform for distributed machine learning on big data.
Big Data, IEEE Transactions on, 1(2):49–67, 2015.

[18] H.-F. Yu, C.-J. Hsieh, H. Yun, S. Vishwanathan, and I. S. Dhillon.
A scalable asynchronous distributed algorithm for topic modeling. In
WWW, 2015.

[19] Hsiang-Fu Yu, Fang-Lan Huang, and Chih-Jen Lin. Dual coordinate
descent methods for logistic regression and maximum entropy models.
Machine Learning, 85(1-2):41–75, October 2011.

[20] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S.V.N. Vishwanathan, and
Inderjit S. Dhillon. NOMAD: Non-locking, stochastic multi-machine
algorithm for asynchronous and decentralized matrix completion. In
International Conference on Very Large Data Bases (VLDB), 2014.

[21] Ce Zhang and Christopher Ré. Dimmwitted: A study of main-memory
statistical analytics. Proceedings of the VLDB Endowment, 7(12):1283–
1294, 2014.

[22] Huan Zhang, Cho-Jui Hsieh, and Venkatesh Akella. Hogwild++: A new
mechanism for decentralized asynchronous stochastic gradient descent.
In ICDM, 2016.

[23] Hui Zou and Trevor Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320, 2005.



0.0 0.2 0.4 0.6 0.8 1.0 1.2

Training Time (s)

0.0

0.5

1.0

1.5

2.0

P
ri

m
al

O
bj

ec
ti

ve
Va

lu
e

×105 a9a

1-thread Reference
PASSCoDe-fix
PASSCoDe

(a) Objective

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Training Time (s)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

a9a

1-thread Reference
PASSCoDe-fix
PASSCoDe

(b) Accuracy
Fig. 3: Convergence of a9a dataset

10−1 100 101

Training Time (s)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

P
ri

m
al

O
bj

ec
ti

ve
Va

lu
e

×105 covtype

1-thread Reference
PASSCoDe-fix
PASSCoDe

(a) Objective

10−1 100 101

Training Time (s)

0.60

0.65

0.70

0.75

0.80
A

cc
ur

ac
y

covtype

1-thread Reference
PASSCoDe-fix
PASSCoDe

(b) Accuracy
Fig. 4: Convergence of covtype dataset

10−1 100 101

Training Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ri

m
al

O
bj

ec
ti

ve
Va

lu
e

×106 webspam

1-thread Reference
PASSCoDe-fix
PASSCoDe

(a) Objective

10−1 100 101

Training Time (s)

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

webspam

1-thread Reference
PASSCoDe-fix
PASSCoDe

(b) Accuracy
Fig. 5: Convergence of webspam dataset

10−2 10−1 100

Training Time (s)

1.6

1.7

1.8

1.9

2.0

2.1

2.2

P
ri

m
al

O
bj

ec
ti

ve
Va

lu
e

×103 news20

1-thread Reference
PASSCoDe-fix
PASSCoDe

(a) Objective

10−2 10−1 100

Training Time (s)

0.950

0.955

0.960

0.965

0.970

A
cc

ur
ac

y

news20

1-thread Reference
PASSCoDe-fix
PASSCoDe

(b) Accuracy
Fig. 6: Convergence of news20 dataset

10−1 100 101

Training Time (s)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

P
ri

m
al

O
bj

ec
ti

ve
Va

lu
e

×104 rcv1

1-thread Reference
PASSCoDe-fix
PASSCoDe

(a) Objective

10−1 100 101

Training Time (s)

0.966

0.968

0.970

0.972

0.974

0.976

A
cc

ur
ac

y

rcv1

1-thread Reference
PASSCoDe-fix
PASSCoDe

(b) Accuracy
Fig. 7: Convergence of rcv1 dataset

100 101

Training Time (s)

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
P

ri
m

al
O

bj
ec

ti
ve

Va
lu

e
×105 epsilon

1-thread Reference
PASSCoDe-fix
PASSCoDe

(a) Objective

100 101

Training Time (s)

0.84

0.85

0.86

0.87

0.88

0.89

0.90

A
cc

ur
ac

y

epsilon

1-thread Reference
PASSCoDe-fix
PASSCoDe

(b) Accuracy
Fig. 8: Convergence of epsilon dataset

Note: if a line is not shown in a figure, that line is out of range due to divergence.



VII. APPENDIX

We prove the convergence theorems and lemmas in this
section. For convenience, we rewrite the update rule of
PASSCoDe-fix (Eq (10)) by

αj+1
t ← T γt (ŵj , αjt ),

where ŵj is the maintained w used in the j-th iteration, and

T γt (w, s) := arg min
u

1

2γ

[
u−

(
s− γwTxt

‖xt‖2
)]2

+ ht(u),

= proxt(s− γwTxt/‖xt‖2).

proxt(s) := arg min
u

(u− s)2/2 + ht(u)/γ

ht(u) :=`∗t (−u)/‖xi‖2.
Here are some notations used in the proof:
• The {αj} and {ŵj} sequence are generated from

PASSCoDe-γ (Algorithm 5) and satisfies

αj+1
t =

{
Tt(ŵ

j , αjt ) if t = i(j),

αjt if t 6= i(j),

where i(j) is the index selected at j-th iteration.
• We define α̃j for each j by

α̃jt = T γt (ŵj , αjt ) ∀t = 1, · · · , n.
For convenience, we define T γ(ŵj ,αj) to be a vector
where each component is T γt (ŵj , αjt ), and prox(s) is a
vector where each element is proxt(st). We have

α̃j = T γ(ŵj ,αj) = prox(αj − γŵTxi/‖xi‖2).

• w̄ = w(αj) =
∑n
i=1 α

j
ixi is the true primal variables.

• The sequence {βj} and {β̃j} are defined by

βj+1
t =

{
T γt (w̄j , αjt ) if t = i(j),

αjt if t 6= i(j),

β̃j+1
t = T γt (w̄j , αjt ) ∀t = 1, . . . , n.

• Let gj(u) be the univariate function considered at the j-th
iteration:

gj(u) :=
1

2γ

[
u−

(
s− γ(w̄j)Txi(j)

‖xi(j)‖2

)]2
+ hi(j)(u).

Thus, βj+1
i(j) = Ti(j)(w̄

j , αji(j)) is the minimizer for gj(u).
[7, Proposition 1, 2, 3] can be directly applied here. We do not
need to use [7, Proposition 4] in our proof, and [7, Proposition
5] can be proved for PASSCoDe-γ:

Proposition 5. For all j > 0, we have

D(αj) ≥ D(βj+1) +
‖xi(j)‖2

2
‖αj − βj+1‖2 (15)

D(αj+1) ≤ D(βj+1) +
Lmax

2
‖αj+1 − βj+1‖2 (16)

Proof. First, from the definition of gj(u) it is ‖xi(j)‖2-
strongly convex and Lmax Lipschitz continuous (since D(·) is

Lmax Lipschitz continuous). We define u∗ = arg minu g
j(u)

to be the minimizer of the uni-variate function, and this implies
∇gj(u∗) = 0. From the strong convexity of gj(·),

gj(αji(j)) ≥gj(β
j+1
i(j) ) +∇gj(βj+1

i(j) )(αji(j) − β
j+1
i(j) )+

‖xi(j)‖2
2

‖αji(j) − β
j+1
i(j) ‖2.

By definition, βj+1
i(j) is between αji(j) and u∗, so either αji(j) ≤

βj+1
i(j) ≤ u∗ or u∗ ≤ βj+1

i(j) ≤ αji(j). Since the function is
strongly convex, the gradient ∇gj(·) is increasing, so for the
first case∇gj(βj+1

i(j) ) ≤ 0 and αji(j)−β
j+1
i(j) ≤ 0. For the second

case both terms ≥ 0. These imply

gj(αji(j)) ≥ gj(β
j+1
i(j) ) +

‖xi(j)‖2
2

‖αji(j) − β
j+1
i(j) ‖2. (17)

From the Lipschitz continuity, we also have

gj(αj+1
i(j) ) ≤ gj(βj+1

i(j) ) +
Lmax

2
‖αj+1

i(j) − β
j+1
i(j) ‖2 (18)

By the definitions of gj , αj , αj+1, and βj+1, (17) and (18)
imply (15) and (16).

A. Proof of Lemma 2

Similar to [11], we prove Eq. (13) by induction. First, for
all j , we have

‖αj−1 − α̃j‖2 − ‖αj − α̃j+1‖2

≤ 2‖αj−1 − α̃j‖‖αj − α̃j+1 −αj−1 + α̃j‖. (19)

See [11] for a proof for the above inequality. We can further
bound this term by

‖αj − α̃j+1 −αj−1 + α̃j‖
≤‖αj−αj−1‖+ ‖ prox(αj−γX̄ŵj)−prox(αj−1−γX̄ŵj−1)‖
≤‖αj −αj−1‖+ ‖(αj − γX̄ŵj)− (αj−1 − γX̄ŵj−1)‖
≤‖αj −αj−1‖+ ‖αj −αj−1‖+ γ‖X̄ŵj − X̄ŵj−1‖
≤2‖αj −αj−1‖+ γ‖X̄w̄j − X̄w̄j−1‖

+ γ‖X̄ŵj − X̄w̄j‖+ γ‖X̄w̄j−1 − X̄ŵj−1‖
≤(2+γM)‖αj−αj−1‖+

∑j−1

t=j−τ
‖δt‖γM+

∑j−2

t=j−τ−1
‖δt‖γM

=(2 + 2γM)‖αj −αj−1‖+ 2γM
∑j−2

t=j−τ−1
‖δt‖ (20)

Now we prove (13) by induction.
Induction Hypothesis. Based on [7, Proposition 1], it

suffices to prove the following inequality: For all j,

E(‖αj−1 − α̃j‖2) ≤ ρE(‖αj − α̃j+1‖2), (21)

Induction Basis. When j = 1,

‖α1 − α̃2 +α0 − α̃1‖ ≤ (2 + 2γM)‖α1 −α0‖.
Taking the expectation of (19), we have

E[‖α0 − α̃1‖2]− E[‖α1 − α̃2‖2]

≤ (4 + 4γM)E(‖α0 − α̃1‖‖α0 −α1‖).



From [7, Proposition 1] we have E[‖α0 − α1‖2] = 1
n‖α0 −

α̃1‖2. Also, using the inequality of arithmetic and geometric
means, for any µ1, µ2, c > 0 we have µ1µ2 ≤ 1

2 (cµ2
1+c−1µ2

2).
Therefore, we have

E[‖α0 − α̃1‖‖α0 −α1‖]

≤ 1

2
E
[
n1/2‖α0 −α1‖2 + n−1/2‖α̃1 −α0‖2

]
=

1

2
E
[
n−1/2‖α0 − α̃1‖2 + n−1/2‖α̃1 −α0‖2

]
= n−1/2E[‖α0 − α̃1‖2].

Therefore,

E[‖α0−α̃1‖2]−E[‖α1−α̃2‖2] ≤ 4 + 4γM√
n

E[‖α0−α̃1‖2],

which implies

E[‖α0 −α1‖2] ≤ 1

1− 4+4γM√
n

E[‖α1 − α̃2‖2]. (22)

From (12) we have

ρ−1 ≤ 1− 4 + 4γM(1 + θ)√
n

≤ 1− 4 + 4γM√
n

. (23)

Combining with (22) we have

E[‖α0 −α1‖2] ≤ ρE[‖α1 − α̃2‖2].

Induction Step. By the induction hypothesis, we assume

E[‖αt−1 − α̃t‖2] ≤ ρE[‖αt − α̃t+1‖2] ∀t ≤ j − 1. (24)

The goal is to show

E[‖αj−1 − α̃j‖2] ≤ ρE[‖αj − α̃j+1‖2].

Using the derivations in the inductive step of [7], for all t < j
we have

E
[
‖αt−αt+1‖‖αj−1−α̃j‖

]
≤ ρ(j−1−t)/2√

n
E
[
‖αj−1−α̃j‖2

]
(25)

Furthermore,

E[‖αj−1 − α̃j‖2]− E[‖αj − α̃j+1‖2]

≤ (4 + 4γM)E(‖αj−1 − α̃j‖‖αj −αj−1‖)

+ 4γM

j−1∑
t=j−τ−1

E
[
‖αj−1 − α̃j‖‖αt −αt−1‖

]
by (19), (20)

≤ (4 + 4γM)n−1/2E[‖α̃j −αj−1‖2]

+ 4γMn−1/2E[‖αj−1 − α̃j‖2]

j−2∑
t=j−1−τ

ρ(j−1−t)/2 by (24)

≤ 4 + 4γM + 4γMθ√
n

E[‖αj−1 − α̃j‖2].

Combining with (23) we have proved the induction step.

B. Proof of Theorem 1

We bound the expected distance by

E
[
‖β̃j+1 − α̃j+1‖2

]
= E

[∑n

t=1

(
T γt (w̄j , αjt )− T γt (ŵj , αjt )

)2]
≤ γ2E

[∑n

t=1

((
w̄j − ŵj

)T
xt/‖xt‖2

)2
]

By [7, Proposition 3]

= γ2E
[
‖X̄(w̄j − ŵj)‖2

]
≤ γ2M2E

[(∑j−1

t=j−τ
‖αt+1 −αt‖

)2
]

By [7, Proposition 2]

≤ γ2τM2E
[(∑τ

t=1
ρt‖αj −αj+1‖2

)]
By Lemma 2

≤ γ2τ2M2

n
ρτE

[
‖α̃j+1 −αj‖2

]
≤ γ2τ2M2e2

n
E
[
‖α̃j+1 −αj‖2

]
, (26)

where the last inequality uses the fact that ρ(τ+1)/2 ≤ e, which
further implies ρτ ≤ e2 because ρ ≥ 1. Applying Cauchy-
Schwarz Inequality, we obtain

E
[
‖β̃j+1 −αj‖2

]
= E

[
‖β̃j+1 − α̃j+1 + α̃j+1 −αj‖2

]
≤ 2

(
1 +

γ2e2τ2M2

n

)
E
[
‖α̃j+1 −αj‖2

]
. (27)

Next, we bound the decrease of objective function value by

D(αj)−D(αj+1)

=
(
D(αj)−D(βj+1)

)
+
(
D(βj+1)−D(αj+1)

)
≥
(
Rmin

2
‖αj − βj+1‖2

)
−
(
Lmax

2
‖βj+1 −αj+1‖2

)
Where the inequality is from Proposition 5. So

E[D(αj)]− E[D(αj+1)]

≥ Rmin
2n

E[‖β̃j+1 −αj‖2]− Lmax
2n

E[‖β̃j+1 − α̃j+1‖2]

≥ Rmin
2n

E[‖β̃j+1−αj‖2]−Lmaxτ
2γ2M2e2

2n2
E[‖α̃j+1−αj‖2] by (26)

≥ Rmin
2n

(
1− 2Lmax

Rmin

(
1 +

eγτM√
n

)(
τ2γ2M2e2

n

))
×

E[‖β̃j+1 −αj‖2] by (27)

Let b =
(

1− 2Lmax

Rmin

(
1 + eτγM√

n

)(
τ2γ2M2e2

n

))
and combin-

ing the above inequality with the definition of Global Error
Bound (Definition 1 in [7]) we have

E[D(αj)]− E[D(αj+1)] ≥ bκ

Lmax
E[D(αj)−D∗].

Therefore, we have

E[D(αj+1)]−D∗

= E[D(αj)]−
(
E[D(αj)]− E[D(αj+1)]

)
−D∗

≤ η
(
E[D(αj)]−D∗

)
,

where η = 1− bκ
Lmax

.


