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Research Statement: Towards Verifiable and Trustworthy Artificial Intelligence
Modern artificial intelligence (AI) has been broadly applied with deep neural networks as one of the most successful
approaches. But the use of neural networks (NNs) in AI is often challenged in mission-critical settings such as cyber-
security, autonomous systems, and medical procedures because AI models are often “black boxes” and untrustworthy:
it is hard to guarantee that they behave safely and predictably. Researchers have often identified surprisingly incorrect
behaviors of AI models, and their brittleness may lead to unexpected catastrophic failures in real-world scenarios. This
is a significant roadblock to the application of AI in scenarios where social responsibility is vital and risks are high.

My research aims to tackle these challenges by building trustworthy AI with provably safe and reliable behaviors
in mission-critical and high-security tasks. My unique approach is to develop formal verification methods for AI
and rigorously verify their trustworthiness. My work is among the first to efficiently verify the trustworthiness of
large neural networks according to formal specifications, which was impossible with traditional verificationmethods
such as satisfiability modulo theories due to the large model size. Theoretically, my bound-propagation-based verifica-
tion framework can formally guarantee that a NN satisfies robustness, safety, or other specifications under malicious or
adversarial input perturbations. Practically, to address the high verification cost, I proposed a series of specialized algo-
rithms with high efficiency and scalability and developed a GPU-accelerated open-source verification toolbox. Finally,
I showed how to build trustworthy AI models to achieve provable guarantees via theoretically principled training.

My verification algorithms for AI have become indispensable in this field, with key papers on neural network veri-
fication cited over 1,000 times combined. My verification toolbox, α,β-CROWN,won two consecutive years of the
International Verification of Neural Network Competition (VNN-COMP 2021, 2022), outperforming tools developed
by Stanford, Oxford, UIUC, and other prestigious universities. Notably, in VNN-COMP 2022, the second-place tool
also took a similar bound-propagation approach inspired by my strong results in 2021. My algorithms enable the veri-
fication of large neural networks with up tomillions of parameters, and their scalability opens up the opportunity to
apply formally verified AI in real-world mission-critical applications. My toolbox has been used by large industrial
players such as Airbus and Collins Aerospace, and my representative verification algorithm (CROWN) has become a
fundamental tool in solving challenging problems in other domains [19] andhas been taught in anMITcourse (16.332).

My future research starting in 2023 will be partly supported by the Schmidt Futures AI2050 Early Career Fel-
lowshipwith a $300,000 grant. Going forward, I aim to bring formal verification into a broad range of applications of
AI, such as cybersecurity, robotics, autonomous systems, aeronautics, healthcare, and finance. I will also focus on fur-
ther improving the scalability and strength of verifiers to enable verified AI in previously infeasible settings. Moreover,
I will borrow insights frommy successful NN verifiers to accelerate a broader class of discrete optimization problems.

1 Completed Research
My research is centered around verifiable and trustworthy AI, with three main themes detailed in this section:

• I proposed thenovel bound-propagation-based verification framework for neural networks, which is scalable
to large NNs and achieves up to three orders of magnitude speedup compared to generic solvers. My algorithms tackle
verification as an optimization problem, exploit its structure for efficiency, and are amenable to GPU acceleration.
• To complement verification, I revealed safety and security issues in AI via falsification methods and attacks.
• I developed principled training approaches to building robust AI, including robust reinforcement learning (RL)
under observational noises and robust classifiers using NNs or tree ensembles with verifiable robustness guarantees.

➀ The bound propagation framework for formal verification of neural networks (NNs). Formal verification
of NNs aims to rigorously prove specifications involvingNN output behavior (e.g., classification is correct) under input
constraints (e.g., inputs with bounded malicious noises). In its canonical form, one must produce sound lower and upper
bounds of NN outputs given arbitrary model inputs within constraints. Although traditional computer-aided verifica-
tion techniques such as satisfiability modulo theories (SMT) or mixed integer programming (MIP) can be applied, these
generic approaches can hardly scale to realistic models; verifying a NN with hundreds of neurons may take days.
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My first contribution is a bound-propagation-based verification algorithm, CROWN [5, 4], that can efficiently
compute the lower and upper bounds of NNs given input perturbations. It is based on the key observation that non-
linear activation functions can be replaced by their linear bounds, and these bounds can be carefully propagated through
each layer to obtain a set of sound linear inequalities bounding the output of a non-convexNN function. Unlike generic
SMT-based or MIP-based verification approaches, the bound propagation process exploits the highly structured verifica-
tion problem with NNs in its backbone and can efficiently run on GPUs [15]. Theoretically, I showed that CROWN is
equivalent to solving linear programming (LP) relaxed fromMIP for ReLUnetworks [9], but crucially, CROWNexploits
the NN structure by propagating linear bounds, can be accelerated on GPUs and scales much better than an LP solver.

My second contribution is to generalize bound-propagation-based verification to general computation func-
tions andwiden their applicability. Early verification algorithmswere limited to feed-forwardnetworks, and to verify
a new architecture such as Transformer, I had to manually derive and implement verification bounds [13]. This burden
greatly restricted the application of verification. To address this challenge, I extended CROWN to general computation
graphs, including general NN architectures and computations [15]. My “auto_LiRPA” library is the first automatic tool-
box giving tight lower and upper bounds under input perturbations for a computation function defined in PyTorch. The
algorithmic efficiency of bound propagation allows auto_LiRPA to verify large models such as a 20-layer ResNet, while
many verifiers at that time could be applied only to a few fully-connected layers. In addition, auto_LiRPA enables bound
propagation for more problems by treating a complex function (such as a Jacobian) as a computation graph, resulting in
new approaches to computing tight local Lipschitz constants and verifying monotonicity of NNs [25, 11].

My third contribution is to strengthen the bound propagation formulation via branch-and-bound and cutting
plane methods and enable novel optimizationmethods to tighten verification. I identified the limitations of CROWNand
many other verifiers (the “convex relaxation barrier” [9]). To break this barrier, β-CROWN [21] utilizes branch-and-
bound (B&B) to strategically divide the verification problem into many subproblems [22] and conducts strengthened
bound propagation on each subproblem. Unlike MIP/SMT solvers, B&B in β-CROWN utilizes bound propagation on
GPUs and quickly enumerates millions of subproblems to verify challenging problems. Moreover, GCP-CROWN [26]
extends bound propagation to include any general cutting plane constraints to further tighten the bound. β-CROWN
andGCP-CROWN introduce novel optimizable parameters during bound propagation, allowing the use of fast gradient
descent to tighten bounds while maintaining soundness. As a result, GCP-CROWN, the strongest bound-propagation-
based algorithm, can completely solve all instances inoval20 (a representative benchmark)with an average time of 3.5s;
in contrast, a generic MIP-based approach can solve only half of all instances with an average time of over 2,000s [26].

With all these innovations above, to maximize the societal impact, I built a practical tool for practitioners to ap-
ply verification in domain-specific tasks. I led a multi-institutional team that developed an open-source and award-
winning neural network verifier, α,β-CROWN, which won VNN-COMP 2021 and 2022, and can solve a variety of
verification problems in computer vision, reinforcement learning, computer systems, and aerospace applications.

➁Security and falsificationof artificial intelligence. Besides verification, falsification aims to find counter-examples
to disprove a certain formal specification. A practical NN verifier must either verify or falsify a given specification, so a
strong falsification procedure is important. When the specification is robustness or safety, falsification is often referred
to as an “adversarial attack”, an active research topic in computer security. In this setting, the attacker or falsifier aims
to find a slightly altered input that triggers an incorrect model behavior. I investigated the robustness of many different
types of AI models, including image classification [3, 10], captioning [2], super-resolution [8], natural language classifi-
cation [12], decision tree ensembles [16] and super-human AI agents playing Go [24]. These attacks are the first of their
kind for these specific domains of AI, demonstrating the weaknesses of modern AI in many applications.
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I also studied different formulations and threat models of adversarial attacks. ZOO-Attack [1] was the first to show
that adversarial attacks of NNs can be conducted in the query-based, black-box setting, demonstrating the practicability
of attacking real-world AI systems. ZOO-Attack is one of the earliest black-box attacks and is highly influential (cited
over 1,300 times), which inspired a long line of papers on black-box attacks. I also proposedBaB-Attack [27], employing
branch-and-bound for a systematic attack that can locate adversarial examples missed by all existing methods.

➂Building robust and verifiable AImodels via training. Since the verification bounds computed by bound prop-
agation are functions of network weights, one can use their gradients to update model weights and tighten the bounds.
CROWN-IBP [17] is a specialized bound propagation algorithm for training, combining the tight CROWNboundswith
cheap interval bound propagation, balancing training efficiency and bound effectiveness. It has become a standard base-
line method for training verifiably robust NNs (or “certified adversarial defense”), and has influenced many works in
this field (cited over 200 times). My recent work [20] further reduces the cost of training verifiable NNs, achieving for-
mally verified robustness guarantees on relatively large models (wide ResNet, ResNeXt) and datasets (TinyImageNet).
In addition, I also studied the effectiveness of using verification-aware model pruning to make NNs verifiable [23].

BeyondNNs and classification problems, I also studied how to build robust AI in other settings. For reinforcement
learning, I developed the first theoretical framework, SA-MDP, to characterize agent behavior under adversaries on
observations [18]. I proposed theoretically principled methods to train robust agents by regularizing a lower bound on
reward [18] and alternatingly train an optimal adversary and the agent [16]. In addition, I studied the formal verification
problem of tree ensembles [7], and proposed robust training of tree ensembles [6] with verifiable guarantees [14].

2 Future Directions
My future research aims to strengthen the capability and scalability of verifiers to enable trustworthy AI in previously
infeasible scenarios, apply formally verified AI to more applications, and make broader impacts on related domains:

Verification beyond robustness. Although formal verification of NNs originated from robustness verification, the
techniques I developed offered a principled way for verifying any computation graph, and verification specifications
can also be extended to more complex ones. My vision of AI verification is that it must be applicable to a large number of
applications (e.g., cyber-security, robotics, aeronautics, manufacturing, and healthcare) to make a bigger societal impact.
I will collaboratewith domain experts and precisely formulate the specifications arising fromdifferent domains, includ-
ing different notions of trustworthiness: safety, stability, reliability, fairness, consistency, privacy, and others. Then, I
will create novel algorithms (based on or beyond the bound propagation approach) that can handle these new formal
specifications. For example, using AI to control a surgical robot (and many other cyber-physical and autonomous sys-
tems) requires safety and stability guarantees. Control theory requires the design of a barrier function satisfying a set
of mathematical conditions describing safety scenarios, but they are challenging to solve for non-linear systems with
complex NN-based controllers. My algorithms can help to find and prove these conditions by treating them as general
computation graphs and verify the safety or stability using bound-propagation techniques. The good scalability of my
approaches can enable provably stable and safe NN-based controllers in large and complex systems.

Strong and scalable verification via high-order bound propagation and verification-friendly system design.
Making the verifier stronger andmore scalable is crucial for applying verification-based techniques in demanding real-
world applications. The tightness and scalability of verifiers can be improved fromdifferent perspectives. To approach a
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new generation of verifiers, I will study a new bound propagation framework using high-order relaxations (such as polyno-
mials); they may bypass the limitations of existing formulations of linear bound propagation and produce much tighter
bounds, while still keeping the benefit of fast bound propagation properties on general computation graphswith a careful de-
sign, allowing stronger verification without sacrificing efficiency. To scale verification to large AI models, I will exploit
the flexibility that AI models can be trained or designed to achieve better verifiability, and propose new training techniques
and novel system architectures that are verification-friendly without sacrificing performance. Lastly, I aim to further
develop the award-wining α,β-CROWN verification toolbox with additions of new algorithms developed in previous
steps, and make this tool a strong and universal one applicable to different domain problems.

Accelerating optimization for a broader class of discrete optimization problems. The success of my NN veri-
fication techniques relies on the fast and GPU-accelerated bound-propagation solver that exploits the structure of the
underlying optimization problem, combined with a highly parallel branch-and-bound process. Inspired by its success, I
will extend the paradigm of bound propagation to other discrete optimization problems with good structures, possibly
optimization problems on graphs. My approach is to develop a fast and relaxed solver for the underlying optimization
problem that can be efficiently accelerated on GPUs in the same spirit as bound-propagation methods. The relaxed
solver should be amenable to highly parallel branch-and-bound to strengthen its power to obtain tighter results, replac-
ing existing MIP or SMT procedures. The goal of this direction aims to achieve a significant speedup on hard discrete
optimization problems in engineering and science, similar to the success I have achieved in neural network verification.

To conclude, I have built a novel framework for the formal verification of neural networks and also thoroughly
studied the safety and robustness of many AI models. I aim to further widen the impact of AI verification and build
trustworthy and verifiable AI models in different domains. I envision a future where trustworthy AI models are widely
deployed, enabling learning-based building blocks in mission-critical systems to enhance their performance.

References (* indicates co-first authors)
[1] Pin-Yu Chen*, Huan Zhang*, Yash Sharma, Jinfeng Yi, Cho-Jui Hsieh. ZOO: Zeroth order optimization based black-box attacks to deep

neural networks without training substitute models. 10th ACMWorkshop on Artificial Intelligence and Security (2017).
[2] Hongge Chen*,Huan Zhang*, Pin-Yu Chen, Jinfeng Yi, Cho-Jui Hsieh. Attacking visual language grounding with adversarial examples: A

case study on neural image captioning. 56th Annual Meeting of the Association for Computational Linguistics (ACL) (2018).
[3] Dong Su*,Huan Zhang*, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, Yupeng Gao. Is robustness the cost of accuracy?–a comprehensive study

on the robustness of 18 deep image classification models. Proceedings of the European Conference on Computer Vision (ECCV) (2018).
[4] Tsui-Wei Weng*, Huan Zhang*, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, Inderjit Dhillon. Towards fast

computation of certified robustness for relu networks. International Conference on Machine Learning (ICML) (2018).
[5] Huan Zhang*, Tsui-Wei Weng*, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel. Efficient neural network robustness certification with general

activation functions. Advances in Neural Information Processing Systems (NeurIPS) (2018).
[6] Hongge Chen,Huan Zhang, Duane Boning, Cho-Jui Hsieh. Robust decision trees against adversarial examples. International Conference on

Machine Learning (ICML) (2019).
[7] Hongge Chen*, Huan Zhang*, Si Si, Yang Li, Duane Boning, Cho-Jui Hsieh. Robustness verification of tree-based models. Advances in

Neural Information Processing Systems (NeurIPS) (2019).
[8] Jun-Ho Choi, Huan Zhang, Jun-Hyuk Kim, Cho-Jui Hsieh, Jong-Seok Lee. Evaluating robustness of deep image super-resolution against

adversarial attacks. International Conference on Computer Vision (ICCV) (2019).
[9] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, Pengchuan Zhang. A convex relaxation barrier to tight robustness verification of

neural networks. Advances in Neural Information Processing Systems (NeurIPS) (2019).
[10] Huan Zhang*, Hongge Chen*, Zhao Song, Duane Boning, Inderjit S Dhillon, Cho-Jui Hsieh. The limitations of adversarial training and the

blind-spot attack. International Conference on Learning Representations (ICLR) (2019).
[11] HuanZhang, PengchuanZhang, Cho-JuiHsieh. RecurJac: An efficient recursive algorithm for bounding Jacobianmatrix of neural networks

and its applications. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2019).
[12] MinhaoCheng, Jinfeng Yi, Pin-YuChen,HuanZhang, Cho-Jui Hsieh. Seq2sick: Evaluating the robustness of sequence-to-sequencemodels

with adversarial examples. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2020).
[13] Zhouxing Shi,Huan Zhang, Kai-Wei Chang, Minlie Huang, Cho-Jui Hsieh. Robustness verification for transformers. International Confer-

ence on Learning Representations (ICLR) (2020).
[14] Yihan Wang, Huan Zhang, Hongge Chen, Duane Boning, Cho-Jui Hsieh. On Lp-norm robustness of ensemble stumps and trees. Interna-

tional Conference on Machine Learning (ICML) (2020).

https://huan-zhang.com


Huan Zhang huan-zhang.com

[15] KaidiXu*, Zhouxing Shi*,HuanZhang*, YihanWang, Kai-WeiChang,MinlieHuang, BhavyaKailkhura, XueLin, Cho-JuiHsieh. Automatic
perturbation analysis for scalable certified robustness and beyond. Advances in Neural Information Processing Systems (NeurIPS) (2020).

[16] Chong Zhang, Huan Zhang, Cho-Jui Hsieh. An efficient adversarial attack for tree ensembles. Advances in Neural Information Processing
Systems (NeurIPS) (2020).

[17] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning, Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust
neural networks. International Conference on Learning Representations (ICLR) (2020).

[18] Huan Zhang*, Hongge Chen*, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, Cho-Jui Hsieh. Robust deep reinforcement learning
against adversarial perturbations on state observations. Advances in Neural Information Processing Systems (NeurIPS) (2020).

[19] Michael Everett. Tutorial on safety verification and stability analysis of neural network-driven systems. IEEE Conference on Decision and
Control (CDC) (2021).

[20] Zhouxing Shi*, Yihan Wang*, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh. Fast certified robust training via better initialization and shorter
warmup. Advances in Neural Information Processing Systems (NeurIPS) (2021).

[21] Shiqi Wang*,Huan Zhang*, Kaidi Xu*, Xue Lin, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter. β-CROWN: Efficient bound propagation with
per-neuron split constraints for neural network robustness verification. Advances in Neural Information Processing Systems (NeurIPS) (2021).

[22] Kaidi Xu*, Huan Zhang*, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, Cho-Jui Hsieh. Fast and complete: Enabling complete neural
network verificationwith rapid andmassively parallel incomplete verifiers. International Conference on Learning Representations (ICLR) (2021).

[23] Tianlong Chen*,Huan Zhang*, Zhenyu Zhang, Shiyu Chang, Sijia Liu, Pin-Yu Chen, ZhangyangWang. Linearity grafting: Relaxed neuron
pruning helps certifiable robustness. International Conference on Machine Learning (ICML) (2022).

[24] Li-Cheng Lan, Huan Zhang, Ti-Rong Wu, Meng-Yu Tsai, I Wu, Cho-Jui Hsieh. Are AlphaZero-like agents robust to adversarial perturba-
tions? Advances in Neural Information Processing Systems (NeurIPS) (2022).

[25] Zhouxing Shi, YihanWang,Huan Zhang, J. Zico Kolter, Cho-Jui Hsieh. Efficiently computing local Lipschitz constants of neural networks
via bound propagation. Advances in Neural Information Processing Systems (NeurIPS) (2022).

[26] Huan Zhang*, Shiqi Wang*, Kaidi Xu*, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter. General cutting planes for bound-
propagation-based neural network verification. Advances in Neural Information Processing Systems (NeurIPS) (2022).

[27] HuanZhang*, ShiqiWang*, Kaidi Xu, YihanWang, Suman Jana, Cho-Jui Hsieh, J. Zico Kolter. A branch and bound framework for stronger
adversarial attacks of relu networks. International Conference on Machine Learning (ICML) (2022).

https://huan-zhang.com

	Completed Research
	Future Directions

